Saves should be changed back to favorites, it sounds more fun.
Nice little things I found messing around:
$$\int_0^1\prod_{n=1}^\infty\left(1-x^n \right )\mathrm dx=\frac{4\pi\sqrt{3}}{\sqrt{23}}\cdot\frac{\text{sinh}\left(\frac{\pi\sqrt{23}}{3} \right )}{\text{cosh}\left(\frac{\pi\sqrt{23}}{2} \right )}$$
$$\int_0^1\prod_{n=1}^\infty\left(1-x^n \right )^3\mathrm dx=2\pi\text{sech}\left(\frac{\pi\sqrt{7}}{2}\right)$$
Already known results, but quite pleasing nonetheless.