0

I recently came across this problem in complex analysis: $$\int_0^\infty \frac{\sin mx}{x(x^2 + a^2)} ~ dx= \frac{\pi}{2a^2} \left(1-\frac{1}{e^{ma}}\right)$$ for $a,m > 0$.

I saw this somehow related integral here but I can't make the right substitution to arrive at the desired answer. I've been trying to solve this for almost 2 days straight without luck.

  • 1
    $$\frac{\sin mx}{x(x^2 + a^2)}=\frac{x\sin x}{a^2}\Big(\frac{1}{x^2}-\frac{1}{x^2+a^2}\Big)=\frac{1}{a^2}\frac{\sin x}{x}-\Im\frac{xe^{im x}}{a^2(x-ia)(x+ia)}$$ $$I=\int_0^\infty\frac{\sin mx}{x(x^2 + a^2)}dx=\frac{1}{a^2}\int_0^\infty\frac{\sin x}{x}dx-\frac{1}{2a^2}\Im\int_{-\infty}^\infty\frac{xe^{im x}}{(x-ia)(x+ia)}dx$$ Closing the contour for the second integral in the upper half-plane by a big half-circle $$I=\frac{\pi}{2a^2}-\frac{1}{2a^2}\Im,\frac {2\pi i, ,ia ,e^{-ma}}{2ia}$$ – Svyatoslav Jun 07 '22 at 11:44

2 Answers2

3

You can use Integral evaluation $\int_{-\infty}^{\infty}\frac{\cos (ax)}{\pi (1+x^2)}dx$ to obtain the result. In fact, let $$I(m)=\int_0^\infty \frac{\sin mx}{x(x^2 + a^2)} ~ dx.$$ Then $I(0)=0$ and $$I'(m)=\int_0^\infty \frac{\cos mx}{x^2 + a^2} ~ dx=\frac{\pi e^{-a m}}{2a}.$$ So $$ I(m)=\int_0^mI(s)ds=\int_0^m\frac{\pi e^{-a s}}{a}ds=\frac{\pi}{2a^2} \left(1-\frac{1}{e^{ma}}\right). $$

xpaul
  • 44,000
1

You can solve this problem by considering the similar, complex function

$$f(z)=\frac{e^{imz}}{z(z^2+a^2)}$$

integrated counterclockwise around the contour $C$ in the image below. The contour consists of a semi-circle $\Gamma$ with radius R in the upper half-plane, from which a smaller semi-cirle $\gamma$ with radius $\epsilon$, centered at the origin, has been cut out.

contour integral

The integral around C can be split into four parts:

$$\oint_Cf(z)dz = \int_{\Gamma}f(z)dz + \int_{\gamma}f(z)dz + \int_{-R}^{-\epsilon}f(z)dz + \int_{\epsilon}^{R}f(z)dz.\tag{1}$$

The left hand side can be evaluated using the residue theorem. The only pole of $f$ which lies inside $C$ is $z=ia$, corresponding to the residue

$$Res_{z=ia}=\lim_{z\to ia}(z-ia)f(z)=\lim_{z\to ia}\frac{e^{imz}}{z(z+ia)}=-\frac{e^{-ma}}{2a^2}.$$

Then, by said theorem,

$$\oint_Cf(z)dz = 2\pi i\cdot(\text{sum of all residues}) = -\frac{\pi i}{a^2e^{ma}}.\tag{2}$$

Next, consider the first term on the right-hand side of (1). Since

$$\left|\frac{e^{imz}}{z(z^2+a^2)}\right|=\left| \frac{1}{z}\right|\left| \frac{1}{z^2+a^2}\right|\leq \frac{1}{R}\left|\frac{1}{z^2}\right|=\frac{1}{R^3},$$

then, by using the estimation lemma and taking the limit as $R$ approaches infinity, you can conclude that

$$\lim_{R\to\infty}\left| \int_{\Gamma}f(z)dz \right| \leq \lim_{R\to\infty} \frac{1}{R^3}\cdot(\text{arc length of }\Gamma) = \lim_{R\to\infty} \frac{\pi}{R^2} = 0. \tag{3}$$

The second term on the right-hand side of (1) can be calculated by substituting $z=\epsilon e^{i\theta} \to dz=i\epsilon e^{i\theta}d\theta$, where $\theta$ is the counter-clockwise angle from the positive x-axis. Note that

$$\int_{\gamma}f(z)dz=\int_{\gamma}\frac{e^{imz}}{z(z^2+a^2)}dz = \int_{\pi}^0\frac{e^{im\epsilon e^{i\theta}}}{\epsilon e^{i\theta}((\epsilon e^{i\theta})^2+a^2)}i\epsilon e^{i\theta}d\theta = \int_{\pi}^0 \frac{ie^{im\epsilon e^{i\theta}}}{\epsilon^2e^{2i\theta}+a^2} d\theta,$$

so by taking the limit as $\epsilon$ approaches zero, you get

$$\lim_{\epsilon \to 0} \int_{\gamma}f(z)dz = \int_{\pi}^0\frac{i}{a^2}d\theta = -\frac{\pi i}{a^2}. \tag{4}$$

Then, by letting $R\to\infty$ and $\epsilon\to 0$ in (1), you can insert (2)-(4) into (1). This yields

$$-\frac{\pi i}{a^2e^{ma}} = -\frac{\pi i}{a^2} + \int_{-\infty}^{0}f(z)dz + \int_{0}^{\infty}f(z)dz = -\frac{\pi i}{a^2} + \int_{-\infty}^{\infty}f(z)dz,$$

or

$$\int_{-\infty}^{\infty}f(z)dz = \int_{-\infty}^{\infty}\frac{e^{imz}}{z(z^2+a^2)}dz = \frac{\pi i}{a^2} - \frac{\pi i}{a^2e^{ma}} = \frac{\pi i}{a^2}\left(1-\frac{1}{e^{ma}}\right). \tag{5}$$

Now, switching back to the real variable $x$ and also taking the imaginary part of (5), you get

$$\int_{-\infty}^{\infty}\frac{\sin(mx)}{x(x^2+a^2)}dx = \frac{\pi}{a^2}\left(1-\frac{1}{e^{ma}}\right). \tag{6}$$

And lastly, because the integrand of (6) is even,

$$\int_{0}^{\infty}\frac{\sin(mx)}{x(x^2+a^2)}dx = \frac{\pi}{2a^2}\left(1-\frac{1}{e^{ma}}\right)\tag{7},$$

which was to be shown.

engjon
  • 113
  • If you replace the $e^{imz}$ factor with $e^{imz}-1$, you don't need the small semicircle. – J.G. Sep 23 '22 at 16:18