Recently a very interesting result
$\int_0^1\frac{\ln(1-x)}{1+x^2}\mathrm{d}x+\int_0^1\frac{\arctan x}{x(1+x)}\mathrm{d}x=0$
has been proved in a more than elegant way. See Show that $\int_0^1\frac{\ln(1-x)}{1+x^2}\mathrm{d}x+\int_0^1\frac{\arctan x}{x(1+x)}\mathrm{d}x=0$
Here we find the value of the integral
$I=\int_{0}^1 \frac{\log(1-x)}{1+x^2} dx$
Let $x=\tan t$, then
$I=\int_{0}^{\pi/4} \log(1-\tan t) dt.$
By IVth property, we get
$I=\int_0^{\pi/4} \log (1-\tan(\pi/4-t)) dt=\int_{0}^{\pi/4} \log \left( 1-\frac{1-\tan x}{1+\tan x}\right) dt=\int_{0}^{\pi/4} \log (2 \tan x)~dx-\int_{0}^{\pi/4}\log(1+\tan x)dx=\frac{\pi}{4} \log 2+J-K.$
$J=\int_{0}^{\pi/4} \log \tan x ~dx=-C,$ see Definite integral $\int_0^{\pi/4}\log\left(\tan{x}\right)\ dx$
Let us work for $K=\int_{0}^{\pi/4} \log(1+\tan x) dx$, by IV property, again we get
$K=\int_0^{\pi/4} \log (1+\tan(\pi/4-t)) dt=\int_{0}^{\pi/4} \log \left( 1+\frac{1-\tan x}{1+\tan x}\right) dt=\int_{0}^{\pi/4} \log 2~ dx-K \implies K=\frac{\pi}{8} \log 2.$
Finally, we get $I=\frac{\pi}{8}\log 2-C,$ where $C$ is the Catalan constant.
What could be other interesting ways of finding $I$?