Сalculate the integral $$ \mathrm{PV}\hspace{-0.5ex}\int_{0}^{\infty} \frac{dx}{x^\alpha(x-a)}, $$ where $0<\alpha <1$ and $a>0$.
So we have simple poles $z = 0$ and $z = a$; We can build contour like in this question to exclude these points.
But for example, in the general case $\int_{0}^{\infty} \frac{R(x)}{x^\alpha} \, dx$, where $R(x)$ is a rational function without poles in $\mathbb{R}$ we can apply something like that:src)
\begin{align*} &\lim_{\substack{\varepsilon \to 0 \\ R \to \infty}} \int_{\partial\mathcal{D}_{R,\varepsilon}} \frac{R(z)}{z^{\alpha}} \, dz = 2\pi i \cdot \sum_k \mathop{\underset{\substack{z=z_k \\ z_k \neq 0}}{\mathrm{Res}}} \frac{R(z)}{z^{\alpha}} \\ &\hspace{3ex}= \lim_{\substack{\varepsilon \to 0 \\ R \to \infty}} \Biggl[ \, \underbrace{\int_{\partial\mathcal{C}_{\varepsilon}} \frac{R(z)}{z^{\alpha}} \, dz}_{\to 0 \text{ as } \varepsilon \to 0} + \int_{[\varepsilon, R]^+} \frac{R(z)}{z^{\alpha}} \, dz + \underbrace{\int_{\partial\mathcal{C}_{R}} \frac{R(z)}{z^{\alpha}} \, dz}_{\to 0 \text{ as } R \to \infty} + \int_{[R, \varepsilon]^-} \frac{R(z)}{z^{\alpha}} \, dz \,\Biggr] \\ &\hspace{3ex}= \int_{0}^{\infty} \frac{R(x)}{x^{\alpha}} \, dx + \int_{\infty}^{0} \frac{R(x)}{x^{\alpha}e^{2\pi \alpha i}} \, dx \\ &\hspace{3ex}= \int_{0}^{\infty} \frac{R(x)}{x^{\alpha}} \, dx - \biggl( \int_{0}^{\infty} \frac{R(x)}{x^{\alpha}e^{2\pi \alpha i}} \, dx \biggr) e^{-2\pi \alpha i} \\[1ex] &\hspace{3ex}= I - I e^{-2\pi \alpha i} = \bigl(1 - e^{-2\pi \alpha i}\bigr) I \\[2ex] &\hspace{3ex}\implies \ \bbox[border:1px black solid;padding:5px;]{I = \frac{2\pi i}{1 - e^{-2\pi \alpha i}} \sum_k \mathop{\underset{\substack{z=z_k \\ z_k \neq 0}}{\mathrm{Res}}} \frac{R(z)}{z^{\alpha}}} \end{align*}
So, my question: How can I avoid long calculations from first answer.
Сan I apply this theorem for my case? (For example use thissrc) instead of $2\pi i \mathop{\underset{z=z_k}{\mathrm{Res}}} \frac{R(z)}{z^\alpha}$ from my calculation above.)
Theorem 9.13. Suppose $f(z)$ has a simple pole at $z_0$. Let $C_r$ be the semicircle $\gamma(\theta) = z_0 + r\mathrm{e}^{i\theta}$, with $0 \leq \theta \leq \pi$. Then $$\lim_{r \to 0} \int_{C_r} f(z) \, \mathrm{d}z = \pi i \operatorname{Res} (f, z_0). $$