Background
let $\displaystyle I_k=\int_{0}^{1} x^k K(x) E(x) \,\mathrm{d} x$.
where $K(z)$ is the complete elliptic integral of the 1st kind, $E(z)$ is the complete elliptic integral of the 2nd kind.
By numerical calculation I found:
$$I_0=\int_{0}^{1} K(x) E(x) \,\mathrm{d} x\overset{?}{=}\frac{7}{4}+\frac{1}{2} \zeta(3)$$
$$I_1=\int_{0}^{1} x K(x) E(x) \,\mathrm{d} x\overset{?}{=}\frac{9}{16}+\frac{21}{32} \zeta(3)$$
Numerical verification:
NIntegrate[EllipticK[x] EllipticE[x], {x, 0, 1}, WorkingPrecision -> 100]
N[(7 Zeta[3] + 2)/4, 100]
NIntegrate[x EllipticK[x] EllipticE[x], {x, 0, 1}, WorkingPrecision -> 100]
N[9 / 16 + 21 Zeta[3] / 32, 100]
Is it possible to prove this conclusion?
Update 20220521
This article gives really helpful results: https://arxiv.org/pdf/1101.1132.pdf
On page7, the authors give formula of K'E', KE, K'E, KE'
, but without KE
.
The most closed formula is K'E'
in page7
$$ \int_0^1 x^n K\left(1-x^2\right) E\left(1-x^2\right) \, dx=\frac{2^{4 n}(n+1)^{3}(n+3)}{16(n+2)^{3}} \frac{\Gamma\left(\frac{1}{2}(n+1)\right)^{8}}{\Gamma(n+1)^{4}}{ }_{7} F_{6}\left(\begin{array}{c} \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{3}{2}, \frac{n+3}{2}, \frac{n+3}{2}, \frac{n+7}{4} \\ 1, \frac{n+3}{4}, \frac{n+2}{2}, \frac{n+4}{2}, \frac{n+4}{2}, \frac{n+4}{2} \end{array} \mid 1\right)$$
let $n = 1$, then:
$$S = \int_0^1 x K\left(1-x^2\right) E\left(1-x^2\right) \, dx$$
let $t = 1-x^2$, then:
$$S = \frac{1}{2} \int_0^1 K(x) E(x) \, dx = \frac{1}{8} (7 \zeta (3)+2)$$
which gives $I_0$, but I can't figure out how to get $I_1$.
Numerical verification of hypergeometric functions given in the paper:
NIntegrate[x^2 EllipticK[1-x^2]EllipticE[1-x^2] ,{x,0,1}]
NIntegrate[Sqrt[1-x] EllipticK[x]EllipticE[x] ,{x,0,1}]/2
Clear[n, p, q]
n = 2.;
NIntegrate[x^n EllipticK[1 - x^2]EllipticE[1 - x^2] , {x, 0, 1}]
p = 2^(4n) (n + 1)^2Gamma[(n + 1) / 2]^8 / (16(n + 2)Gamma[n + 1]^4);
q = HypergeometricPFQ[
{-1 / 2, 1 / 2, 1 / 2, 1 / 2, (n + 1) / 2, (n + 1) / 2, (n + 5) / 4},
{1, (n + 1) / 4, n / 2 + 1, n / 2 + 1, n / 2 + 1, n / 2 + 2},
1
];
p q
p = 2^(4n) (n + 1)^3(n + 3)Gamma[(n + 1) / 2]^8 / (16(n + 2)^3Gamma[n + 1]^4);
q = HypergeometricPFQ[
{1 / 2, 1 / 2, 1 / 2, 3 / 2, (n + 3) / 2, (n + 3) / 2, (n + 7) / 4},
{1, (n + 3) / 4, n / 2 + 1, n / 2 + 2, n / 2 + 2, n / 2 + 2},
1
];
p q