Let denote $K$ and $E$ the complete elliptic integral of the first and second kind.
The integrand $K(\sqrt{k})$ and $E(\sqrt{k})$ has a closed-form antiderivative in term of $K(\sqrt{k})$ and $E(\sqrt{k})$, so we know that $$ \int_0^1 K\left(\sqrt{k}\right) \, dk = 2, $$ and $$ \int_0^1 E\left(\sqrt{k}\right) \, dk = \frac{4}{3}. $$
I couldn't find closed-form antiderivatives to the integrals $\int K(\sqrt{k})^2 \, dk$, $\int E(\sqrt{k})^2 \, dk$, $\int E(\sqrt{k})K(\sqrt{k}) \, dk$, but I've conjectured, that
$$\begin{align} \int_0^1 K\left(\sqrt{k}\right)^2 \, dk &\stackrel{?}{=} \frac{7}{2}\zeta(3),\\ \int_0^1 E\left(\sqrt{k}\right)^2 \, dk &\stackrel{?}{=} \frac{7}{8}\zeta(3)+\frac{3}{4},\\ \int_0^1 K\left(\sqrt{k}\right)E\left(\sqrt{k}\right) \, dk &\stackrel{?}{=} \frac{7}{4}\zeta(3)+\frac{1}{2}. \end{align}$$
How could we prove this closed-forms? It would be nice to see some references to these integrals.