Is there a solution to this definite integral
$$ \int_{-\infty}^{d*} \left(\sqrt{c_0\; x^2 +c_1}\right)^{-m} H_{-m}\left(c_2\; \sqrt{\frac{c_0\; x^2}{c_0\; x^2 + c_1}}\right) \mathrm{d} x $$
with $m$ a positive integer and $c_0$, $c_1$, and $c_2$ constants where $H$ is the Hermite polynomial?
I am using the physics version of the Hermite polynomial.