Let $\overline{a},\overline{b} \in\mathbb{Z}_n$. If $\overline{a}\mid\overline{b}$, then $gcd(a,n) \mid gcd(b,n).$
Proof:
$(\Rightarrow)$ By definition, $\overline{a},\overline{b} \in\mathbb{Z}_n \Leftrightarrow a \equiv 0 \pmod n, b \equiv 0 \pmod n.$ Subtracting those, we get $a-b \equiv 0 \pmod n$, i.e., $a-b=nq \Leftrightarrow b=a-nq \,(1), \,q\in\mathbb{Z}.$
By definition, $gcd(a,n) \mid a$ and $gcd(a,n) \mid n \,(2)$. Then, by $(1)$ and $(2)$, $gcd(a,n) \mid b$.
Also by definition, $gcd(a,n)=ax+ny$ and $gcd(b,n)=bv+nw.$ We know $gcd(a,n) \mid n$ and $gcd(a,n) \mid b$. Therefore, $gcd(a,n) \mid gcd(b,n).$
$(\Leftarrow)$ I'm still thinking about it.
Is this proof correct?
Thanks in advance :)