I want to find the $nth$ derivatives of the function $e^{f(x)}$ with respect to $x$, the first derivative is $$e^{f(x)}f^{\prime}(x).$$ The second derivative is $$\left( {\frac {d^{2}}{d{x}^{2}}}f \left( x \right) \right) {{\rm e}^ {f \left( x \right) }}+ \left( {\frac {d}{dx}}f \left( x \right) \right) ^{2}{{\rm e}^{f \left( x \right) }} .$$ The third derivative is $$\left( {\frac {d^{3}}{d{x}^{3}}}f \left( x \right) \right) {{\rm e}^ {f \left( x \right) }}+3\, \left( {\frac {d^{2}}{d{x}^{2}}}f \left( x \right) \right) \left( {\frac {d}{dx}}f \left( x \right) \right) { {\rm e}^{f \left( x \right) }}+ \left( {\frac {d}{dx}}f \left( x \right) \right) ^{3}{{\rm e}^{f \left( x \right) }} $$ The fourth derivative is $$ \left( {\frac {d^{4}}{d{x}^{4}}}f \left( x \right) \right) {{\rm e}^ {f \left( x \right) }}+4\, \left( {\frac {d^{3}}{d{x}^{3}}}f \left( x \right) \right) \left( {\frac {d}{dx}}f \left( x \right) \right) { {\rm e}^{f \left( x \right) }}+3\, \left( {\frac {d^{2}}{d{x}^{2}}}f \left( x \right) \right) ^{2}{{\rm e}^{f \left( x \right) }}+6\, \left( {\frac {d^{2}}{d{x}^{2}}}f \left( x \right) \right) \left( { \frac {d}{dx}}f \left( x \right) \right) ^{2}{{\rm e}^{f \left( x \right) }}+ \left( {\frac {d}{dx}}f \left( x \right) \right) ^{4}{ {\rm e}^{f \left( x \right) }} $$
My question is: Is there a general formula or a pattern for the nth derivative of $e^{f(x)}$. You may use the maple command diff(exp(f(x)), x$5) to do some experiments. Thanks a lot ^^