Below are a couple proofs that work generally for problems of this type. They highlight the key role played by the coprimality of the determinant $\color{#c00}{\Delta}$ of gcd linear transformations.
A quick, easy way via gcd laws: by $\,a\,$ even we can renotate $\,a\to 2a,\,$ so by $\,\rm\color{#c00}T \!=\,$this Theorem
$\qquad d := (4a\!+\!4b,4a\!+\!8b) = 4(a\!+\!b,a\!+\!2b)\overset{\bf\color{#c00}T}= 4\color{#0a0}{(a,b)}= \bbox[5px,border:1px solid #c00]{4\cdot\color{#0a0}5}\ $ by $\,\color{#c00}{\Delta = 1}\,$ in $\rm\color{#c00}T,\,$ and by
$\qquad (2)\ \&\ (3)\Rightarrow\! \begin{align} 12a\!+\!11b &= 5\\ 2a\ -\,\ b &= 5c\end{align}\, $ therefore $\,\color{#0a0}{(a,b)} \overset{\bf\color{#c00}T}= (5,5c)\!=\!\color{#0a0}5,\,$ by $\ \color{#c00}{\Delta = -34}$ coprime to $\color{#0a0}5$
We used the gcd distributive law to factor $\,4\,$ from the gcd in the first displayed equation above.
Alternatively we can avoid $\:\!\rm\color{#c00}T\,$ by using $(a\!+\!b,a\!+\!2b) = (a\!+\!b,b) = \color{#0a0}{(a,b)}\,$ by Euclid, and then finish using the following $\rm\color{#90f}{Bezout}$-based characterization of certain $\rm\color{#0a0}{gcds}$.
Thm $ $ $\,\ \color{#90f}{j\,a+k\,b\:\! =\:\! c}\ \:\!$ & $\:\!\ (c,\color{#c00}{j\!+\!k})\!=\!1\,\Rightarrow\,$ below are equivalent:
$(1)\qquad\! \color{#0af}{a\!\equiv\! b \pmod{\!c}}$
$(2)\qquad\! c\mid a,b$
$(3)\qquad\!\! \color{#0a0}{(a\,,b)=c}$
Proof
$(1\Rightarrow 2)\,\ \bmod c\!:\ 0\!\equiv\!\color{#90f}{c\!=\!ja\!+\!kb} \!\overset{\color{#0af}{a\,\equiv\,b_{\phantom |}}}\equiv\! (j\!+\!k)b$ $\smash{\overset{\times\ (\color{#c00}{j+k})^{-1}\!\!}\Longrightarrow}$ $b\!\equiv\! 0,\,$ so $\, a\!\equiv\! b\!\equiv\! 0.\,$
$(2\Rightarrow 3)\,\ $ a $\rm\color{#90f}{linear}$ common divisor $\,\color{#90f}{c}\,$ is greatest: $\,d\mid \color{#90f}{a,b}\Rightarrow d\mid \color{#90f}{c\!=\!ja\!+\!kb}$
$(3\Rightarrow 1)\,\ \ \color{#0a0}{c\mid a,b} \,\Rightarrow\, \color{#0af}{\bmod c\!:\,\ a\equiv 0\equiv b}$
Remark $ $ Note Thm is a special case of Theorem $\rm\color{#c00}{T},\,$ applied to the linear system ${\begin{align}\color{#0af}{a \:\!-\:\! b\:\! }&= \color{#0af}c\:\!d\\[-.1em]
\color{#90f}{ja\!+\!kb}&\color{#90f}=c\end{align}}\,$ with determinant $\, \color{#c00}{\Delta =j\!+\!k}\ $ (similar to the first proof).