Given $a,b$ 2 numbers in $Z$ Where:
- $a$ is even number (ie there is $d$ in $Z$ S.T $a=2d$)
- $6a+11b=5$
- $a-b=5e$ for some $e$ in $Z$
My book claims: $gcd(2a+4b, 2a+8b)=20$
Why is that? How am I supposed to solve similar questions?
I know:
$a=2d$, $6a+11b=5$, $a-b=5e$
So:
$gcd(2a+4b, 2a+8b)=gcd(4(d+b),4(d+2a-10e)=4 gcd(d+b,d+2a-10e)$
I'm stuck here, where can I use the fact that $6a+11b=5$?