Edit (2024-02-22). An SOS (Sum of Squares) solution simpler than my old one
Remarks: The proof is motivated by computer. It is still complicated to verify that $Q$ is positive semidefinite by hand. Hope to see a proof which can be verified by hand (the proof itself can be motivated by computer).
Let $a := x + y, b := y + z, c := z + x$.
We have the following SOS expression
$$x(x + y)^5 + y(y + z)^5 + z(z + x)^5 - \frac{32}{243}(x + y + z)^6
= \frac{1}{972}Z^\mathsf{T} Q Z$$
where
$$Z := [{a}^{3},{a}^{2}b,a{b}^{2},{b}^{3},{a}^{2}c,abc,{b}^{2}c,a{c}^{2},b{c}
^{2},{c}^{3}],
$$
and
$$Q := \begin{pmatrix}
A & B \\
B^\top & C
\end{pmatrix}
$$
with
$$A := \left[ \begin {array}{ccccc} 484&-249&-217&-89&237
\\-249&404&69&-165&-38\\-217&69&
300&237&-150\\ -89&-165&237&484&-20
\\ 237&-38&-150&-20&300\end {array} \right],
$$
and
$$B := \left[ \begin {array}{ccccc} 8&100&-165&-20&-89\\ -
10&-40&-40&-31&100\\ 0&-38&-31&-150&-20
\\ 8&-249&100&-217&-89\\ 0&-31&69&
-150&-217\end {array} \right] ,$$
and
$$C := \left[ \begin {array}{ccccc} 6&-10&-10&0&8\\ -10&
404&-40&69&-165\\ -10&-40&404&-38&-249
\\ 0&69&-38&300&237\\ 8&-165&-249&
237&484\end {array} \right] .$$