Inspired by my post, I start to investigate a more general integral
$$ J_{m}=\int_{0}^{\infty} \frac{1}{\left(x^{m}+\frac{1}{x^{m}}\right)^{2}} d x \quad \text { where } m \in \mathbb{N} . \\$$ Rearranging and integrate by parts yields
\begin{align*} J_{m} &=\int_{0}^{\infty} \frac{x^{2 m}}{\left(x^{2 m}+1\right)^{2}} d x \\ &=-\frac{1}{2 m} \int_{0}^{\infty} x d\left(\frac{1}{x^{2 m}+1}\right) \\ &=-\left[\frac{x}{2 m\left(x^{2 m}+1\right)}\right]_{0}^{\infty}+\frac{1}{2 m} \int_{0}^{\infty} \frac{1}{x^{2 m}+1} d x \\ &=\frac{1}{2 m} \cdot\frac{\pi}{2 m} \csc \left(\frac{\pi}{2 m}\right) \tag{$*$}\\ &=\frac{\pi}{4 m^{2}} \csc \left(\frac{\pi}{2 m}\right) \end{align*} where $(*)$ comes from the Theorem, $$ \int_{0}^{\infty} \frac{d x}{1+x^{n}}=\frac{\pi}{n} \csc \left(\frac{\pi}{n}\right). $$
In particular, $$ \begin{array}{l} \displaystyle I_{3}=\frac{\pi}{36} \csc \left(\frac{\pi}{6}\right)=\frac{\pi}{18} \\ \displaystyle I_{4}=\frac{\pi}{64} \csc \left(\frac{\pi}{8}\right)=\frac{\pi}{32 \sqrt{2-\sqrt{2}}} \end{array} $$
My question:
Can we go further for $$ I(m, n):=\int_{0}^{\infty} \frac{d x}{\left(x^{m}+\frac{1}{x^{m}}\right)^{n}}. $$
where $m,n\in \mathbb{N}$ and $n\geq 2$?
Latest edit
I have found an answer for $I(m,n)$ using the result in one of my posts and share with you now. $$ I(m,n)=\frac{\pi}{2m(n-1) !} \csc \frac{(mn+1) \pi}{2m} \prod_{j=1}^{n-1}\left(j-\frac{mn+1}{2m}\right),\tag*{} $$
However, the proof is a bit complicated. Can you help give a simpler one?