$\textrm{I first reduce the power two to one by Integration by Parts.}$
$\begin{aligned}\displaystyle \int_{0}^{\infty} \frac{1}{\left(x^{3}+\frac{1}{x^{3}}\right)^{2}} d x &=\int_{0}^{\infty} \frac{x^{6}}{\left(x^{6}+1\right)^{2}} d x\\&=\displaystyle -\frac{1}{6} \int_{0}^{\infty} x d\left(\frac{1}{x^{6}+1}\right)\\& =\displaystyle -\left[\frac{x}{6\left(x^{6}+1\right)}\right]_{0}^{\infty}+\frac{1}{6} \int_{0}^{\infty} \frac{1}{x^{6}+1} d x \quad \textrm{ (Via Integration by Parts})\\&=\displaystyle \frac{1}{6} \int_{0}^{\infty} \frac{1}{x^{6}+1} d x\end{aligned}$
$\textrm{Then I am planning to evaluate }\displaystyle I= \int_{0}^{\infty} \frac{1}{x^{6}+1}\text{ by resolving }\frac{1}{x^{6}+1} \text{ into partial fractions.}$
But after noticing that $$I=\int_{0}^{\infty} \frac{d x}{x^{6}+1}\stackrel{x\mapsto\frac{1}{x}}{=} \int_{0}^{\infty} \frac{x^{4}}{x^{6}+1} d x,$$
I changed my mind and started with $3I$ instead of $I$ as below:
$$ \begin{aligned} 3 I &=\int_{0}^{\infty} \frac{x^{4}+2}{\left(x^{2}+1\right)\left(x^{4}-x^{2}+1\right)} d x \\ &=\int_{0}^{\infty}\left(\frac{1}{x^{2}+1}+\frac{1}{x^{4}-x^{2}+1}\right) d x \\ &=\left[\tan ^{-1} x\right]_{0}^{\infty}+\int_{0}^{\infty} \frac{\frac{1}{x^{2}}}{x^{2}+\frac{1}{x^{2}}-1} d x \\ &=\frac{\pi}{2}+\frac{1}{2} \int_{0}^{\infty} \frac{\left(1+\frac{1}{x^{2}}\right)-\left(1-\frac{1}{x^{2}}\right)}{x^{2}+\frac{1}{x^{2}}-1} d x\\ &=\frac{\pi}{2}+\frac{1}{2}\left[\int_{0}^{\infty} \frac{d\left(x-\frac{1}{x}\right)}{\left(x-\frac{1}{x}\right)^{2}+1}-\int \frac{d\left(x+\frac{1}{x}\right)}{\left(x+\frac{1}{x}\right)^{2}-3}\right] \\ &=\frac{\pi}{2}+\frac{1}{2}\left[\tan ^{-1}\left(x-\frac{1}{x}\right)\right]_{0}^{\infty}-0 \\ &=\frac{\pi}{2}+\frac{1}{2}\left[\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)\right] \\ &=\pi \\ \therefore I &=\frac{\pi}{3} \end{aligned} $$ Now I can conclude that $$\boxed{\displaystyle \quad \int_{0}^{\infty} \frac{1}{\left(x^{3}+\frac{1}{x^{3}}\right)^{2}} d x=\frac{\pi}{18} }.$$
:|D Wish you enjoy the solution! Opinions and alternative methods are welcome.