A different way to solve the first question following an algebraic approach might go as follows.
We have
$$
S_{\,1} (n) = \sum\limits_{1\, \le \,\,r\, \le \,n} {\left( { - 1} \right)^{\,r - 1} \;{1 \over r}\left( \matrix{
n \cr
r \cr} \right)} \quad \quad S_{\,2} (n) = \sum\limits_{1\, \le \,\,r\, \le \,n} {{1 \over r}}
$$
Let's take the finite difference of $S_1$
$$
\eqalign{
& \Delta S_{\,1} (n) = S_{\,1} (n + 1) - S_{\,1} (n) = \cr
& = \sum\limits_{1\, \le \,\,r\, \le \,n + 1} {\left( { - 1} \right)^{\,r - 1} \;{1 \over r}\left( \matrix{ n + 1 \cr r \cr} \right)} -
\sum\limits_{1\, \le \,\,r\, \le \,n} {\left( { - 1} \right)^{\,r - 1} \;{1 \over r}\left( \matrix{ n \cr r \cr} \right)} = \quad\quad (0) \cr
& = \sum\limits_{1\, \le \,\,r\, \le \,n + 1} {\left( { - 1} \right)^{\,r - 1} \;
{1 \over r}\left( {\left( \matrix{ n + 1 \cr r \cr} \right) - \left( \matrix{ n \cr r \cr} \right)} \right)} = \quad \quad (1) \cr
& = \sum\limits_{1\, \le \,\,r\, \le \,n + 1} {\left( { - 1} \right)^{\,r - 1} \;{1 \over r}\left( \matrix{ n \cr r - 1 \cr} \right)} = \quad \quad (2) \cr
& = {1 \over {n + 1}}\sum\limits_{1\, \le \,\,r\, \le \,n + 1} {\left( { - 1} \right)^{\,r - 1} \;\left( \matrix{ n + 1 \cr r \cr} \right)} = \quad \quad (3) \cr
& = {1 \over {n + 1}}\left( { - \left( { - 1} \right) - \sum\limits_{0\, \le \,\,r\, \le \,n + 1}
{\left( { - 1} \right)^{\,r} \;\left( \matrix{ n + 1 \cr r \cr} \right)} } \right) = \quad \quad (4) \cr
& = {1 \over {n + 1}}\quad \quad (5) \cr}
$$
where:
- (0) we can extend the limit of the 2nd sum;
- (1) join the sums;
- (2) recursion of binomial;
- (3) absorption identity;
- (4) minus plus the term $r=0$;
- (5) the sum is null.
Since it is
$$
\left\{ \matrix{
S_{\,1} (1) = S_{\,2} (1) = 1 \hfill \cr
\Delta S_{\,1} (n) = \Delta S_{\,2} (n) = {1 \over {n + 1}} \hfill \cr} \right.
$$
then the two sums are equal.
Concerning the second question, we rewrite the sum as an iterated Finite Difference
$$
\eqalign{
& S_{\,3} (n) = \sum\limits_{\left( {0\, \le } \right)\,\,r\,\left( { \le \,n} \right)} {\left( { - 1} \right)^{\,r} \;{1 \over {1 + 4r}}\left( \matrix{ n \cr r \cr} \right)} = \cr
& = {{\left( { - 1} \right)^{\,n} } \over 4}\sum\limits_{\left( {0\, \le } \right)\,\,r\,\left( { \le \,n} \right)}
{\left( { - 1} \right)^{\,n - r} \;{1 \over {1/4 + r}}\left( \matrix{ n \cr r \cr} \right)} = \cr
& = {{\left( { - 1} \right)^{\,n} } \over 4}\left. {\Delta ^{\,n} \left( {{1 \over {1/4 + x}}} \right)\,} \right|_{\,x\, = \,0} \cr}
$$
Then we pass and consider the Falling and Rising Factorials
for which the delta has a simple expression
$$
\Delta _{\,x} ^m \;x^{\,\underline {\,n\,} } = n^{\,\underline {\,m\,} } x^{\,\underline {\,n - m\,} }
$$
and for which applies the following indentity
$$
x^{\underline {\, - m\,} } = {1 \over {\left( {x + m} \right)^{\underline {\,m\,} } }} = {1 \over {\left( {x + 1} \right)^{\overline {\,m\,} } }}
$$
Therefore we can write
$$
{1 \over {1/4 + x}} = {1 \over {\left( {1/4 + x} \right)^{\overline {\,1\,} } }} = \left( { - 3/4 + x} \right)^{\underline {\, - 1\,} }
$$
and
$$
\eqalign{
& \Delta ^{\,n} \left( {{1 \over {1/4 + x}}} \right) = \Delta ^{\,n} \left( { - 3/4 + x} \right)^{\underline {\, - 1\,} }
= \left( { - 1} \right)^{\underline {\,n\,} } \left( { - 3/4 + x} \right)^{\underline {\, - 1 - n\,} } = \cr
& = \left( { - 1} \right)^{\,n} n!\left( { - 3/4 + x} \right)^{\underline {\, - 1 - n\,} } \cr}
$$
So the sum becomes
$$
\eqalign{
& S_{\,3} (n) = {{\left( { - 1} \right)^{\,n} } \over 4}\left. {\Delta ^{\,n} \left( {{1 \over {1/4 + x}}} \right)\,} \right|_{\,x\, = \,0} = \cr
& = {{\left( { - 1} \right)^{\,n} } \over 4}\left( { - 1} \right)^{\,n} n!\left( { - 3/4} \right)^{\underline {\, - 1 - n\,} }
= {{\left( { - 1} \right)^{\,n + 1} n!} \over 4}\left( {3/4} \right)^{\overline {\, - n - 1\,} } = \cr
& = {{\left( { - 1} \right)^{\,n + 1} } \over 4}{{\Gamma \left( {n + 1} \right)\Gamma \left( { - n - 1/4} \right)} \over {\Gamma \left( {3/4} \right)}}
= {{\left( { - 1} \right)^{\,n + 1} } \over 4}{\rm B}\left( {n + 1,\; - n - 1/4} \right) = \cr
& = {1 \over 4}{{n!} \over {\left( {1/4} \right)^{\overline {\,n + 1\,} } }}
= {1 \over 4}{{\prod\limits_{k = 0}^{n - 1} {\left( {1 + k} \right)} } \over {\prod\limits_{k = 0}^n {\left( {1/4 + k} \right)} }} = \cr
& = {{4^{\,n} } \over {\left( {1 + 4n} \right)}}\prod\limits_{k = 0}^{n - 1} {{{\left( {1 + k} \right)} \over {\left( {1 + 4k} \right)}}} = \cr
& = {{4^{\,n} n!} \over {1 \cdot 5 \cdot 9 \cdot \; \ldots \; \cdot \left( {1 + 4n} \right)}} \cr}
$$