I would like if possible to have a proof of yet another theorem of Binomial Coefficients. This time it is $$\sum_{k=0}^n{(-1)^k\over k+1}\binom{n}{k}={1\over n+1}$$
This arises in a proof of the theorem to the effect that $$\operatorname{\Gamma}(n,\mu)$$ is equal to the hypervolume cut out of the positive unit hyperbox with one corner at the origin and each edge parallel to an axis by the hypersurface defined by $$\prod_{k=1}^n x_k=e^{-\mu} .$$
Again, because I did find a proof of the this theorem other than by the route inwhich this theorem of binomial coefficients arose, I now do effectively have a proof of this theorem of binomial coefficients ... but again, taken as a proof per se it's absurdly complex; and I think there must be an elementary one: and besides, as I have said elsewhere, I like to have an entire map of a mathematical 'landscape' rather than just knowledge of a particular 'route' connecting this place & that.
I was shown two excellent proofs for the theorem of binomial coefficients & Pochhammer numbers that I requested a proof of; bur I don't think these are applicable to this one - not unadapted in someway anyhow - and possibly a proof by a completely different route would serve better in this case.