I am lacking some really basic algebra knowledge.
Can somebody help me with the following notation in $\mathbb{Q}[\sqrt{d}]$?
$$ (2)=(2, \frac{1 + \sqrt{d}}{2})(2, \frac{1 - \sqrt{d}}{2}) $$
Does it mean $$(2, \frac{1 + \sqrt{d}}{2})(2, \frac{1 - \sqrt{d}}{2}) = (2 + \frac{1 + \sqrt{d}}{2})(2 + \frac{1 - \sqrt{d}}{2}) \\ = 4 + (\frac{1 + \sqrt{d}}{2})( \frac{1 - \sqrt{d}}{2}) ~ ??$$
And how do I calculate the Norm of $(2, \frac{1 + \sqrt{d}}{2})$?
$$ N\left((2, \frac{1 + \sqrt{d}}{2})\right) = N\left((2 + \frac{1 + \sqrt{d}}{2})\right) = ? $$