Let $\,w = 1\!+\!\sqrt{-5}.\,$ As in $\,{\small \rm 4NT} =$ Euler's Four Number Theorem, using $\,(2,3)\!=\!(1),\,$ we have
$$\,\underbrace{2\cdot 3 = \color{0a0}w\!\:\color{c00}{\bar w}\, \Rightarrow\, (2) = (2,\color{#c00}w)(\color{#90f}2,\color{#0a0}{\bar w})}_{\textstyle a\,d\, =\, b\,c\ \underset{\small \rm 4NT}\Rightarrow\, (a) = (a,b)\,(a,c)} = (2,\color{#c00}w)^2\ \ {\rm by}\ \ \underbrace{\color{#0a0}{\bar w}\equiv -\color{#c00}w\!\!\!\pmod{\!\color{#90f}2}}_{\textstyle \bar w + w \,=\, 2}\ \ \ \ \small\bf QED\qquad$$
$\small \bf 4NT$ Proof $ $ As for gcds, $\rm\small 4NT$ constructs a nontrivial (ideal) factorization of $\,2\,$ from a factorization of any multiple $\,w\bar w\,$ of $\,2\,$ that is nontrivial (i.e. $\,2\nmid w,\bar w),\,$ i.e. a witness that $\,2\,$ is composite (not prime). To do so we simply take the ideal gcd (= ideal sum) of $\,2\,$ with each factor $\:\!w,\:\!\bar w\,$ (assuming any common factor of $\color{#0a0}{a,b,c,d}$ has been cancelled). The proof is the same as that linked for gcds:
$$ \bbox[1px,border:3px solid #c60]{\bbox[10px,border:1px solid #c00]{\begin{align}&(\color{#0a0}{a,b,c,d})\!=\!(1),\ \color{#c00}{ad = bc} \ \Rightarrow\ (a,b)\,(a,c) = (aa,ab,ac,\color{#c00}{bc}) = (\color{#c00}a)(\color{#0a0}{a,b,c,}\color{#c00}d) \:\!=\:\! (a)\\[.2em]
&\rm\small \color{#0a0}{A\!+\!B\!+\!C\!+\!D}\!=\!(1),\, \color{#c00}{AD\!=\!BC}\Rightarrow(A\!+\!B)(A\!+\!C)=A^2\!+\!AB\!+\!AC\!+\!\color{#c00}{BC}= \color{#c00}A(\color{#0a0}{A\!+\!B\!+\!C}\!+\!\color{#c00}D) = A\end{align}}}
\qquad$$
Alternatively, we can repeat the proof of $\small \rm 4NT$ in this special case as below, but doing that obfuscates the key arithmetical idea (factorization refinement) that $\small\rm 4NT$ conveys.
${w^2} =\, 2w\,-\,6\,$ for $\,w = 1+\sqrt{-5},\,$ so apply below with $\,a=2$
$\!\begin{align}\color{darkorange}{w^2} = ab w + ac,\ \color{#c00}{(a,c)\!=\!(1)} \Rightarrow\ (a,w)^2\! &= (a^2,aw,\color{darkorange}{w^2})\\
&=\, (a^2,aw,ac+abw)\\
&=\, a(a,\ \,\color{#0a0}w,\ \,c\:\!+\ \,b\color{#0a0}w)\\
&=\, a(\color{#c00}a,\ \ w,\ \,\color{#c00}c)\\
&=\, a(\color{#c00}1)
\end{align}$
The ideal arithmetic in Lubin's answer is a special case of the above. For an introduction to this simple ideal (and gcd) arithmetic see here and its links.