I came to know this $\epsilon$-$N$ argument from the elementary proof of Tannery theorem [1].
(I used Tannery theorem to prove that
$\lim_{n \to \infty} \int^1_0 f(x) |\sin(n \pi x)|\,\mathrm{d}x = \frac{2}{\pi} \int^1_0 f(x)\,\mathrm{d}x$ Proving $\lim_{n \to \infty} \int^1_0 f(x) |\sin(n \pi x)|\,dx = \frac{2}{\pi} \int^1_0 f(x)\,dx$ .)
Denote $m = \lfloor \sqrt{n}\rfloor$ where $\lfloor \cdot \rfloor$ is the floor function. We have
\begin{align*}
&1 - (1 - p_j)^n\\
=\,& p_j\Big(1 + (1 - p_j) + (1 - p_j)^2 + \cdots + (1 - p_j)^{n - 1}\Big)\\
\le\,& p_j \Big(1 + (1 - p_j) + (1 - p_j)^2 + \cdots + (1 - p_j)^{m - 1} + n (1 - p_j)^m\Big)\\
\le\,& p_j \Big(m + n(1 - p_j)^m\Big).
\end{align*}
Thus,
$$\frac{1}{n}[1 - (1 - p_j)^n] \le \frac{m}{n} p_j + p_j(1 - p_j)^m.$$
It suffices to prove that
$$\lim_{m\to \infty} \sum_{j=1}^\infty p_j(1 - p_j)^m = 0.$$
$\epsilon$-$N$ argument:
For any given $\epsilon > 0$, there is
an $N$ such that
$\sum_{j > N} p_j(1 - p_j)^m
\le \sum_{j > N} p_j < \frac{\epsilon}{2}$.
Clearly, for each $j$, there is an $M_j$ such that
$p_j(1 - p_j)^m < \frac{\epsilon}{2N}$
for all $m > M_j$.
Let $M = \max(M_1, M_2, \cdots, M_N)$.
We have
$$\sum_{j=1}^\infty p_j(1 - p_j)^m
= \sum_{j\le N} p_j(1 - p_j)^m
+ \sum_{j > N} p_j(1 - p_j)^m
< N \cdot \frac{\epsilon}{2N} + \frac{\epsilon}{2} = \epsilon$$
for all $m > M$.
Reference:
[1] Josef Hofbauer, "A simple proof of 1 + 1/22 + 1/32 + ... = PI2/6 and related identities",
American Mathematical Monthly 109 (February 2002), 196-200.
https://homepage.univie.ac.at/josef.hofbauer/piq6.htm