Since $f$ is continuous on $[0,1]$, it is uniformly continuous. That is, for any $\epsilon\gt0$, there is a $\delta\gt0$ so that if $|x-y|\le\delta$, then $|f(x)-f(y)|\le\epsilon$.
Pick an $\epsilon\gt0$ and let $\delta$ satisfy the requirements above. Choose $n$ so that $\frac1n\le\delta$.
For $1\le k\le n$, define $I_k=\left[\frac{k-1}{n},\frac{k}{n}\right]$ and
$$
f_k=n\int_{I_k}f(x)\,\mathrm{d}x\tag1
$$
Taking the mean over $I_k$ of $\inf\limits_{u\in I_k}f(u)-f_k\le f(x)-f_k\le\sup\limits_{u\in I_k}f(u)-f_k$, we get
$$
\inf_{u\in I_k}f(u)-f_k\le0\le\sup_{u\in I_k}f(u)-f_k\tag2
$$
By the choice of $n$, the difference between the left and right side of $(2)$ is less than or equal to $\epsilon$. Thus,
$$
\sup_{u\in I_k}|f(u)-f_k|\le\epsilon\tag3
$$
Therefore, $(3)$ and $\int_{I_k}|\sin(n\pi x)|\,\mathrm{d}x=\frac2{n\pi}$ ensure
$$
\int_{I_k}|f(x)-f_k|\,|\sin(n\pi x)|\,\mathrm{d}x\le\frac2{n\pi}\epsilon\tag4
$$
Thus, we get
$$
\begin{align}
&\left|\,\int_0^1f(x)\,|\sin(n\pi x)|\,\mathrm{d}x-\frac2\pi\int_0^1f(x)\,\mathrm{d}x\,\right|\tag{5a}\\
&=\left|\,\sum_{k=1}^n\left(\int_{I_k}f(x)\,|\sin(n\pi x)|\,\mathrm{d}x-\frac2\pi\int_{I_k}f(x)\,\mathrm{d}x\right)\right|\tag{5b}\\
&=\left|\,\sum_{k=1}^n\left(\int_{I_k}f(x)\,|\sin(n\pi x)|\,\mathrm{d}x-\frac2\pi\int_{I_k}f_k\,\mathrm{d}x\right)\right|\tag{5c}\\
&=\left|\,\sum_{k=1}^n\left(\int_{I_k}f(x)\,|\sin(n\pi x)|\,\mathrm{d}x-\int_{I_k}f_k|\sin(n\pi x)|\,\mathrm{d}x\right)\right|\tag{5d}\\
&\le\sum_{k=1}^n\int_{I_k}|f(x)-f_k|\,|\sin(n\pi x)|\,\mathrm{d}x\tag{5e}\\[3pt]
&\le\frac2\pi\epsilon\tag{5f}
\end{align}
$$
Explanation:
$\text{(5b)}$: $\bigcup\limits_{k=1}^nI_k=[0,1]$
$\text{(5c)}$: apply $(1)$
$\text{(5d)}$: $\int_{I_k}|\sin(n\pi x)|\,\mathrm{d}x=\frac2\pi\int_{I_k}\mathrm{d}x$
$\text{(5e)}$: triangle inequality
$\text{(5f)}$: apply $(4)$
Since $\epsilon\gt0$ was arbitrary, inequality $(5)$ says that
$$
\lim_{n\to\infty}\int_0^1f(x)\,|\sin(n\pi x)|\,\mathrm{d}x=\frac2\pi\int_0^1f(x)\,\mathrm{d}x\tag6
$$