Given $G=\langle a\rangle$, $|G|=n$ and $d\mid n$, show $G$ has a unique subgroup of order $d$.
Proof:
(Existence) : $|\langle a\rangle|=|a|=n$ and $ |a^\frac{n}{d}|=d$. Then, $H_d=\langle a^\frac{n}{d}\rangle$ is a subgroup of $G$ of order $d$.
(Uniqueness) :
Suppose, $H\le G$ and $|H|=d$.
Claim: $H=H_d$.
It is enough to prove one-sided set inclusion $H\subseteq H_d$ because $H\le H_d$ and $|H|=|H_d|$ implies $H=H_d$.
Choose $b\in H$ . Then $|H|=d \implies b^d=e$ and $b\in H \implies b \in G$.
Hence $b=a^k$ for some $k\in \mathbb{Z}$. Also $e=b^d =(a^k)^d =a^{kd} $ and $|a|=n $ implies $n|kd$.
Hence $kd=nk'$ for some $k'\in \mathbb{Z}$ and $k=(\frac{n}{d})k'$
Hence $b=a^k =a^{{(\frac{n}{d})}k'}$ for some $k' \in \mathbb{Z}$ implies $b\in H_d$. Hence $H\subseteq H_d$ and then $H=H_d$.
Note: $|G|$ : order of the group $G$.
Is the proof correct ? Is there any mistake?