I know how to solve $\int_{a}^{b}\frac{1}{x}e^{-x^{2}}dx$ using upper incomplete gamma function (we can assum that $\left|b\right|>\left|a\right|$) $$\int_{a}^{b}\frac{1}{x}e^{-x^{2}}dx=\int_{a}^{b}\frac{2x}{2x^{2}}e^{-x^{2}}dx\stackrel{\begin{array}{c} t=x^{2}\\ dt=2xdx \end{array}}{=}\int_{a^{2}}^{b^{2}}\frac{1}{2t}e^{-t}dt=\frac{1}{2}\left[\Gamma\left(0,a^{2}\right)-\Gamma\left(0,b^{2}\right)\right]$$ there is something that I can do when I have some phase in the exponent: $$\int_{a}^{b}\frac{1}{x}e^{-\left(x+c\right)^{2}}dx=?$$ Even an evaluation will help,
thanks!