I
$$\frac{1}{\sigma\sqrt{2\pi}}\int^S _{-\infty} x \cdot\exp\left(\frac{-{\left(x-\mu \right)}^{2}}{2\sigma }\right)\cdot \operatorname{erf}\left(\frac{A(x-\mu )}{\sigma \sqrt{2}}\right)\mathrm dx$$
I
$$\frac{1}{\sigma\sqrt{2\pi}}\int^S _{-\infty} x \cdot\exp\left(\frac{-{\left(x-\mu \right)}^{2}}{2\sigma }\right)\cdot \operatorname{erf}\left(\frac{A(x-\mu )}{\sigma \sqrt{2}}\right)\mathrm dx$$
We will calculate
$$ I(a,b,c):=\int\limits_{-\infty}^c dx \ x e^{-(x-a)^2} \operatorname{erf}(b(x-a)) $$
Which is equivalent to your integral upon rescaling $x$. We will make use of the following results from here
$$ J(A,B,C,D)=\int\limits_D^\infty dx \ e^{-Cx^2} \operatorname{erf}(Ax+B)=2\sqrt{\frac{\pi}{C}} \ T(D\sqrt{2C},A/\sqrt{C},B\sqrt{2}) $$
Where $T$ is the 'generalized Owen T function' defined here. $J$ may be expressed in terms of elementary functions and the 'regular' Owen T function. When $D=-\infty$ we have
$$ J(A,B,C,-\infty)= \sqrt{\frac{\pi}{C}}\operatorname{erf} \left(B \sqrt{\frac{C}{A^2+C}}\right) $$
Now define $K$ as
$$ K(A,B,C,D):=J(A,B,C,-\infty) \ - \ J(A,B,C,D) $$
First let $x-a=y$
$$ \tag{*} I(a,b,c)=\int\limits_{-\infty}^{c-a} dy \ ye^{-y^2} \operatorname{erf}(by) +a\int\limits_{-\infty}^{c-a} dy \ e^{-y^2} \operatorname{erf}(by) $$
The second integral on the right is already in the form of $K$. We need to evaluate the first. Let
$$ L(b,c,\alpha):=\int\limits_{-\infty}^{c} dy \ e^{\alpha y}e^{-y^2} \operatorname{erf}(by) $$
So that the first integral on the right in (*) is given by $\partial_\alpha L(b,c-a,0)$. Complete the square in the exponents to find
$$ L(b,c,\alpha)=e^{\alpha^2/4}\int\limits_{-\infty}^{c} dy \ e^{-(y-\alpha/2)^2} \operatorname{erf}(by)=e^{\alpha^2/4}\int\limits_{-\infty}^{c-\alpha/2} dt \ e^{-t^2} \operatorname{erf}(bt+\alpha b/2) $$
The integral on the right is now again in terms of $K$
$$ L(b,c,\alpha)=e^{\alpha^2/4} K(b,\alpha b/2,1,c-\alpha/2) $$
Putting it all together we have
$$ I(a,b,c)=\partial_\alpha L(b,c-a,\alpha) \bigg|_{\alpha=0} + a K(b,0,1,c-a) $$
I hope they're no typos here! In any case, this is the strategy mentioned in the comments.