I'm struggling to derive the Finsler geodesic equations. The books I know either skip the computation or use the length functional directly. I want to use the energy. Let $(M,F)$ be a Finsler manifold and consider the energy functional $$E[\gamma] = \frac{1}{2}\int_I F^2_{\gamma(t)}(\dot{\gamma}(t))\,{\rm d}t\tag{1}$$evaluated along a (regular) curve $\gamma\colon I \to M$. We use tangent coordinates $(x^1,\ldots,x^n,v^1,\ldots, v^n)$ on $TM$ and write $g_{ij}(x,v)$ for the components of the fundamental tensor of $(M,F)$. We may take for granted (using Einstein's convention) that $$F^2_x(v) = g_{ij}(x,v)v^iv^j, \quad \frac{1}{2}\frac{\partial F^2}{\partial v^i}(x,v) = g_{ij}(x,v)v^j, \quad\frac{\partial g_{ij}}{\partial v^k}(x,v)v^k = 0.\tag{2} $$
Setting $L(x,v) = (1/2) F_x^2(v)$, and writing $(\gamma(t),\dot{\gamma}(t)) \sim (x(t),v(t))$, the Euler-Lagrange equations are $$0 = \frac{{\rm d}}{{\rm d}t}\left(\frac{\partial L}{\partial v^k}(x(t),v(t))\right) -\frac{\partial L}{\partial x^k}(x(t),v(t)),\quad k=1,\ldots, n=\dim(M).\tag{3}$$It's easy to see (omitting application points) that $$\frac{\partial L}{\partial x^k} = \frac{1}{2}\frac{\partial g_{ij}}{\partial x^k}\dot{x}^i\dot{x}^j\quad\mbox{and}\quad \frac{\partial L}{\partial v^k} = g_{ik}\dot{x}^i,\tag{4}$$so $$\frac{\rm d}{{\rm d}t}\left(\frac{\partial L}{\partial v^k}\right) = \frac{\partial g_{ik}}{\partial x^j}\dot{x}^j\dot{x}^i +{\color{red}{ \frac{\partial g_{ik}}{\partial v^j} \ddot{x}^j\dot{x}^i }}+ g_{ik}\ddot{x}^i\tag{5}$$ Problem: I cannot see for the life of me how to get rid of these $v^j$-derivatives indicated in red, even using the last relation in (2), as the indices simply don't match. I am surely missing something obvious. Once we know that this term does vanish, then (4) and (5) combine to give $$ g_{ik}\ddot{x}^i + \left(\frac{\partial g_{ik}}{\partial x^j} - \frac{1}{2}\frac{\partial g_{ij}}{\partial x^k}\right)\dot{x}^i\dot{x}^j =0\tag{6}$$as in the Wikipedia page.