Define $F : \mathbb{S}_+^n \to (-\infty, +\infty]$ by
$$ F(S) = -\log\det S + \operatorname{tr}(\Sigma S). $$
Also, denote by $\operatorname{int}(\mathbb{S}_+^{n})$ the set of all $n\times n$ positive-definite matrices. In this answer, we will only consider the case where $\Sigma \in \operatorname{int}(\mathbb{S}_+^{n})$.
Let $S \in \operatorname{int}(\mathbb{S}_+^{n})$. Then for any $n\times n$ symmetric $H$, there exists $\delta > 0$ such that $\| t S^{-1}H \| < 1$ and $S + tH \in \operatorname{int}(\mathbb{S}_+^{n})$ for all $|t| < \delta$, where $\| \cdot \|$ is the operator norm. Moreover, for such $t$, we get
\begin{align*}
F(S + t H)
&= F(S) - \log \det (I + t S^{-1}H) + \operatorname{tr}(\Sigma H) t \\
&= F(S) - \operatorname{tr} \log (I + t S^{-1}H) + \operatorname{tr}(\Sigma H) t .
\end{align*}
From this, it follows that
$$ \left. \frac{\mathrm{d}}{\mathrm{d}t} \right|_{t=0} F(S + t H) = \operatorname{tr}((\Sigma - S^{-1})H) \tag{1} $$
and
$$ \left. \frac{\mathrm{d}^2}{\mathrm{d}t^2} \right|_{t=0} F(S + t H)
= \operatorname{tr}(S^{-1}HS^{-1}H)
= \operatorname{tr}\bigl((S^{-1/2}HS^{-1/2})^2\bigr) \geq 0 \tag{2} $$
with the equality if and only if $H = 0$.
Then $\text{(2)}$ shows that $F$ is strictly convex on $\operatorname{int}(\mathbb{S}_+^n)$, hence by continuity, $F$ is convex on $\mathbb{S}_+^n$. Moreover, $\text{(1)}$ shows that $S = \Sigma^{-1}$ is the unique critical point of $F$. Therefore $\Sigma^{-1}$ is the unique minimizer of $F$ as required.