$$ \sum_{k=1}^{\infty} ( 1/ k^2 ) A ^k $$ where
A =\begin{bmatrix}-1 & 1 \\ 0 & -1 \end{bmatrix}
$$ \sum_{k=1}^{\infty} ( 1/ k^2 ) A ^k $$ where
A =\begin{bmatrix}-1 & 1 \\ 0 & -1 \end{bmatrix}
Hints.
Provided Lord Soth's interpretation of your question (cf. comment above) is correct, here's an approach which'll help you get what you want:
$$\sum_{n=0}^{\infty} 1/ n^2 = ( 1/ n^2 ) A ^n$$ = $$\sum_{n=0}^{\infty} $$ \begin{bmatrix}(-1)^n / n^2 & (-1)^(n+1)/n \ 0 & (-1)^n / n^2 \end{bmatrix}
– Rosa Maria Gtz. Jun 27 '13 at 22:24