Find the limit or prove the limit does not exist using the definition of the limit:
$$\lim\limits_{x \rightarrow c} x^2+x+1.$$
I am getting stuck in the problem following through on the algebra to figure out a $\delta$ to choose.
Find the limit or prove the limit does not exist using the definition of the limit:
$$\lim\limits_{x \rightarrow c} x^2+x+1.$$
I am getting stuck in the problem following through on the algebra to figure out a $\delta$ to choose.
Fix any $\varepsilon > 0$. Define $M=|c|+1$, and $\delta = \min\left(\frac{\varepsilon}{2M},1\right)$. Then, for any $x$ such that $|x-c|\leq \delta$, $$ \begin{align*} |c^2+c+1-(x^2+x+1)|&=|c-x||c+x+1| \leq \delta (|c|+1+|x|) \\ &\leq \delta\cdot (M+|c|+\delta) \\ &\leq \delta\cdot (M+|c|+1) = \delta\cdot 2M \\ &\leq \varepsilon \end{align*} $$