Problem :
Let $50\geq a>\varepsilon>0 $,$x>\varepsilon>0$ then it seems we have :
$$g(x)=2\left(\frac{\left(ax\right)^{\frac{1}{ax-1}}}{e\ln\left(\left(ax\right)^{\frac{1}{ax-1}}\right)}\right)^{\frac{a}{2\left(a+1\right)}}\leq \sqrt{\frac{x^{a}}{a}}+\sqrt{\frac{a^{x}}{x}}=f(x)$$
Using Generalized Young inequality where $b=1$ we have :
$$h(x)=\left(\frac{1}{a^{b}}+\frac{1}{x^{b}}\right)\left(a^{\sqrt{2^{-1}}x^{\left(1-b\right)}}\cdot x^{\left(\sqrt{2^{-1}}\left(a\right)^{\left(1-b\right)}\right)}\cdot a^{\frac{\left(b-0.5\right)\sqrt{2}}{a^{b}}}\cdot x^{\frac{\left(b-0.5\right)\sqrt{2}}{x^{b}}}\right)^{\frac{1}{\sqrt{2}a^{-b}+\frac{\sqrt{2}}{x^{b}}}}\leq f(x)$$
It seems for $a\leq 1$ that :
$$h(x)\geq g(x)$$
It's not true for $a\geq 1$
After taking the logarithm on both side it seems we have a refinement of : Prove $2(x + y)\ln \frac{x + y}{2} - (x + 1)\ln x - (y + 1)\ln y \ge 0$
Edit : We have the inequality on $(0,1]$ :
$$\frac{\left(x+1\right)}{\left(x-1\right)}\ln\left(1+x-\sqrt{x}\right)\geq x\frac{\ln\left(x\right)}{x-1}$$
A proof can be found here New bound for Am-Gm of 2 variables
Edit 2 :
We have $x>0$:
$$\frac{\left(x-1\right)}{2}-\frac{\left(x-1\right)^{3}}{48}\leq \sqrt{x}\ln\sqrt{x}\leq \frac{\left(x-1\right)}{2}+\frac{\left(x^{-1}-1\right)^{3}}{48}$$
Edit 3 :
We have the easy inequality for $1\leq x\leq 3$ :
$$\frac{x^{\frac{1}{x-1}}}{e\ln x^{\frac{1}{x-1}}}\leq \frac{x^{-0.5}}{\ln\left(x^{-0.5}e\right)}$$
Last edit :
Let $x>1$ then we have :
$$\ln\left(\ln\left(x\right)\right)\leq \frac{x-e+\frac{\left(x-e\right)^{3}}{6e^{2}}}{x}$$
For $x>\frac{5}{100}$ we have the inequality :
$$m(x)=2\left(\frac{3}{4}\cdot\frac{1}{4}\left(\frac{2\left(x-1\right)}{x+1}+\frac{\left(x-1\right)}{\sqrt{x}}\right)+\left(\sqrt{\sqrt{\sqrt{x}}}-1\right)\right)\geq \ln x$$
And for $0<x\leq 1 $ :
$$p(x)=\frac{1}{2}\left(\frac{2}{3+x}\left(\frac{2\left(x-1\right)}{x+1}+\frac{\left(x-1\right)}{\sqrt{x}}\right)+4\left(\sqrt{\sqrt{x}}-1\right)\right)\leq \ln x$$
Let $\frac{5}{100}<x\leq 1$
$$\left(\frac{16}{10}\cdot p\left(x^{\frac{1}{8}}\right)+\frac{64}{10}\cdot m\left(x^{\frac{1}{8}}\right)\right)\geq \ln(x)$$
All the inequalities can be proved using derivatives .
The goal is to come to an inequality like :
$$k(a+x,ax,0)\geq 0$$
And then apply $uvw's$ method.
Question :
How to (dis)prove the problem ?
Reference :
Refined Young inequalities with Specht's ratio S Furuichi - Journal of the Egyptian Mathematical Society, 2012 - Elsevier