Let $Q_n$ denote the quadratic residues in $U_n=\mathbb Z_n^\times$.Our instructor gave us a characterisation of $Q_n$ as follows:
$1.$ If $\gcd(m,n)=1$.then $a\in Q_{mn}\iff a\in Q_m $ and $a\in Q_n$.(Why?)
$2.$ For $p$ odd prime,$a\in Q_{p^k} \iff a\in Q_p$.
$3.$ $Q_2= Q_4=\{1\}$ and $Q_{2^k}=\{a:a\equiv 1(\mod 8)\}$ for $k\geq 3$.
Using these results,we are to find $Q_{160}$. I am not sure how to proceed.I know that $a\in Q_{160}$ iff $a\in Q_{2^5}$ and $a\in Q_5$ and $Q_{2^5}=\{a\in U_{32}:a\equiv 1(\mod 8)\}$ and $Q_5=\{1,4\}$. Then how to find $Q_{160}$ .Someone please help me with this. Also I want a proof of the result $(1)$.