By CRT the solutions $\,x\equiv \pm1\pmod{\! 7},\ x\equiv \pm1\pmod{\!13}$ combine to $\,4\,$ solutions mod $91,\,$ viz $\,x\equiv (\color{#c00}{{\bf 1,1}}),\,(\color{#0a0}{-1,-1}),\,(1,-1),\,(-1,1)\pmod{\!7,13},$ cf. "$\rm\color{#90f}{Combining}$" below. The first two have solution $\,\color{#c00}{\bf 1}\,$ and $\,\color{#0a0}{-1}\,$ by CCRT. Finally solve $\,x\equiv (1,-1)$, and $(-1,1)\equiv -(1,-1)$ is its negative, i.e. $\,x\equiv 1\pmod{\!7},\,x\equiv -1\pmod{\!13}\ [\!\iff -x\equiv -1\pmod{\!7},\ {-}x\equiv 1\pmod{\!13}\:\!]$ to get $\,x\equiv \pm 27\pmod{91},\,$ the nontrivial $(\not\equiv \pm 1)$ sqrt's of $1,\bmod 91$.
Remark $ $ In more complex cases it's often easier to apply CRT using generic (symbolic) values, then plug in specific values for all combinations, e.g. see here and here. and many here.
Conversely, given any nontrivial $(\not\equiv \pm1)$ square-root of $1\pmod{\!n}$ we can quickly compute a nontrivial factorization of $n\,$ [we can do that for any polynomial of $\,\deg k\,$ with $\,> k\,$ roots].
$\rm\color{#90f}{Combining}$ $ $ If $\,m,n\,$ are coprime then, by CRT, solving a polynomial $\,f(x)\equiv 0\pmod{\!mn}\,$ is equivalent to solving $\,f(x)\equiv 0\,$ mod $\,m\,$ and mod $\,n.\,$ By CRT, each combination of a root $\,r_i\bmod m\,$ and a root $\,s_j\bmod n\,$ corresponds to a unique root $\,t_{ij}\bmod mn,\,$ i.e.
$$\begin{eqnarray} f(x)\equiv 0\!\!\!\pmod{\!mn}&\overset{\,\,\rm CRT}\iff& \begin{array}{}f(x)\equiv 0\pmod{\! m}\\f(x)\equiv 0\pmod{\! n}\end{array} \\
&\,\,\iff& \begin{array}{}x\equiv r_1,\ldots,r_k\pmod{\! m}\phantom{I^{I^{I^I}}}\\x\equiv s_1,\ldots,s_\ell\pmod{\! n}\end{array}\\
&\,\,\iff& \left\{ \begin{array}{}x\equiv r_i\pmod{\! m}\\x\equiv s_j\pmod {\! n}\end{array} \right\}_{\begin{array}{}1\le i\le k\\ 1\le j\le\ell\end{array}}^{\phantom{I^{I^{I^I}}}}\\
&\overset{\,\,\rm CRT}\iff& \left\{ x\equiv t_{i j}\!\!\pmod{\!mn} \right\}_{\begin{array}{}1\le i\le k\\ 1\le j\le\ell\end{array}}\\
\end{eqnarray}\qquad\qquad$$