PREFACE: this is called Hermite reduction. It is, for example, Theorem 23 in The Arithmetic Theory of Quadratic Forms by Burton W. Jones, pages 56-59 primarily. On page 58 you clearly see an upper triangular matrix as the change of variables. The W stands for Wadsworth.
I get
$$ x^2 + 4 y^2 + 16 z^2 + 20 y z + 8 z x + 8 x y = (x + 4 y + 4 z)^2 - 12 \left( y + \frac{z}{2} \right)^2 + 3 z^2, $$ so
$$ x^2 + 4 y^2 + 16 z^2 + 20 y z + 8 z x + 8 x y = (x + 4 y + 4 z)^2 - 3 \left( 2y + z \right)^2 + 3 z^2. $$
Note that this was very, very little work. Nowhere near finding eigenvectors.
This is called Hermite reduction.
The relevant matrix equation is
$$
\left( \begin{array}{ccc}
1 & 0 & 0 \\
4 & 2 & 0 \\
4 & 1 & 1
\end{array}
\right)
\left( \begin{array}{ccc}
1 & 0 & 0 \\
0 & -3 & 0 \\
0 & 0 & 3
\end{array}
\right)
\left( \begin{array}{ccc}
1 & 4 & 4 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{array}
\right)
=
\left( \begin{array}{ccc}
1 & 4 & 4 \\
4 & 4 & 10 \\
4 & 10 & 16
\end{array}
\right).
$$
Either that, or they really want the inverses, as in
$$
\left( \begin{array}{ccc}
2 & 0 & 0 \\
-4 & 1 & 0 \\
-4 & -1 & 2
\end{array}
\right)
\left( \begin{array}{ccc}
1 & 4 & 4 \\
4 & 4 & 10 \\
4 & 10 & 16
\end{array}
\right)
\left( \begin{array}{ccc}
2 & -4 & -4 \\
0 & 1 & -1 \\
0 & 0 & 2
\end{array}
\right)
=
\left( \begin{array}{ccc}
4 & 0 & 0 \\
0 & -12 & 0 \\
0 & 0 & 12
\end{array}
\right).
$$
Either way, less work than eigenvectors.
EDDDIITTTT: @copper.hat has confirmed that the eigenvalues are horrible, I get the characteristic polynomial as $$ \lambda^3 - 21 \lambda^2 - 48 \lambda + 36 $$ with three irrational real roots, so this is the Casus Irrededucibilis and so the eigenvectors are horrible. Which tells me they really want Hermite.
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=

=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=