As $k$ is odd,
$r^k+(n+1-r)^k$ is divisible by $r+(n+1-r)=n+1$
and $s^k+(n-s)^k$ is divisible by $s+(n-s)=n$
Putting $r=1,2,\cdots,n-1,n$ and adding them we get
$$(n+1)|\sum_{1\le r\le n}\{r^k+(n+1-r)^k\} \implies (n+1)|2\sum_{1\le r\le n}r^k$$
Putting $s=1,2,\cdots,n-1,n$ and adding them we get
$$n|\sum_{1\le s\le n}\{s^k+(n-s)^k\} \implies (n)|2\sum_{1\le s\le n}s^k \implies n|2\sum_{1\le r\le n}r^k$$
Now, either $n$ or $n+1$ is odd
If $n$ is odd, $$n|2\sum_{1\le r\le n}r^k\implies n|\sum_{1\le r\le n}r^k$$
$$\implies \text{lcm}(n+1,n) | 2\sum_{1\le r\le n}r^k$$
$$\implies n(n+1) | 2\sum_{1\le r\le n}r^k\implies \frac{n(n+1)}2 | \sum_{1\le r\le n}r^k$$
Similarly when $n+1$ is odd