Starting with the pair $ \ 1^3 \ \ \text{and} \ \ 998^3 \ \ , $ we have
$$ 1^3 \ + \ (999 - 1)^3 \ \ = \ \ 1^3 \ + \ (999^3 \ - \ 3·999^2 · 1 \ + \ 3·999·1^2 \ - \ 1^3) $$ $$ = \ \ 999 \ · \ (999^2 \ - \ 3·999 \ + \ 3) \ \ . $$
Similarly.
$$ n^3 \ + \ (999 - n)^3 \ \ = \ \ n^3 \ + \ (999^3 \ - \ 3·999^2 · n \ + \ 3·999·n^2 \ - \ n^3) $$ $$ = \ \ 999 \ · \ (999^2 \ - \ 3·999·n \ + \ 3n^2) \ \ . $$
The "middle" pair is $ \ n = 499 \ , \ (999-n) = 500 \ \ , $ so all of the integer-cubes are covered in this way.
Teresa Lisbon's hint is related, but this applies a binomial expansion, rather than the difference-of-two-cubes.
$ \ \ $
ADDENDUM: This can be generalized. If $ \ M \ $ and $ \ p \ $ are odd integers, then
$$ \sum_{k \ = \ 1}^{M-1} \ k^p \ \ \text{is divisible by M} \ \ , $$
since
$$ n^p \ + \ (M-n)^p \ \ = \ \ n^p \ + \ [ \ M^p \ - \ \binom{p}{1}·M^{p-1}·n \ + \ \binom{p}{2}·M^{p-2}·n^2 \ + \ \ldots $$ $$ - \ \binom{p}{p-2}·M^2·n^{p-2} \ + \ \binom{p}{p-1}·M·n^{p-1} \ - \ n^p \ ] \ \ , $$
with all integers from $ \ 1 \ \ \text{to} \ \ (M-1) \ \ $ covered since the middle-pair is $ \ \frac{M-1}{2} \ \ , \ \ \frac{M+1}{2} \ \ . $
In fact, it is not necessary to use a "run" of consecutive pairings: the sum of any subset of such pairs $ \ n^p \ , \ (M - n)^p \ $ is divisible by $ \ M \ \ . $