I have a problem
$$\int_{0}^{+\infty} \frac{\sin^3 x}{x^2} \,dx$$
How do I solve this?
Attempt:
$$I(\alpha)=\int_{0}^{+\infty} \frac{\sin^3 (\alpha x)}{x^2} \,dx$$
$$\implies I'(\alpha)=\int_{0}^{+\infty} \frac{3\cos (\alpha x)\sin^2 (\alpha x)}{x} \,dx$$
$$\Longleftrightarrow I'(\alpha)=\frac{3}{2}\int_{0}^{+\infty} \frac{\sin (\alpha x)\sin (2\alpha x)}{x} \,dx$$
$$\Longleftrightarrow I'(\alpha)=\frac{3}{2}\int_{0}^{+\infty} \frac{\cos (\alpha x)-\cos (3\alpha x)}{x} \,dx$$
I'm stuck here. If I continue to differential it one more time I get
$$I''(\alpha)=\frac{3}{2}\int_{0}^{+\infty} -\sin (\alpha x)+3\sin (3\alpha x) \,dx$$
In which I also don't know what to proceed next. Thanks everyone!