How to find the value of
$$\lim_{R \to \infty} \int_{0}^{R} \frac{\cos(ax)-\cos(bx)}{x} dx?$$
How to find the value of
$$\lim_{R \to \infty} \int_{0}^{R} \frac{\cos(ax)-\cos(bx)}{x} dx?$$
HINTS:
Use Frullani's Integral with a slight modification (deform the contour by using Cauchy's Integral Theorem) to find
$$\int_0^\infty \frac{\cos(ax)-\cos(bx)}{x}\,dx=\log(b/a)$$
Alternatively, introduce a new parameter $\alpha>0$ and evaluate the integral
$$I(\alpha)=\int_0^\infty e^{-\alpha x}\frac{\cos(ax)-\cos(bx)}{x}\,dx$$
by differentiating under the integral sign.