Let $u_0 \in L^{\infty}(\mathbb{R})$. We say that $u \in L^{\infty}(\mathbb{R} \times [0, +\infty))$ is weak solution of the Burgers equation
$$\left\{\begin{array}{ccl} u_t + uu_x & = & 0;\\ u(x,0) & = & u_0(x), \end{array}\right.$$ if for all $\varphi \in C_c^{\infty}(\mathbb{R} \times [0;1))$ is valid $$\int_{\mathbb{R} \times [0,\infty)} \left[u(x,t)\varphi_t(x,t) + \dfrac{1}{2}u^2(x,t)\varphi_x(x,t)\right]dxdt + \int_{\mathbb{R}} u_0(x)\varphi(x,0)dx = 0.$$
Question: Consider the Burgers equation above with $u_0$ invariant by dilation, that is, there is $\lambda > 0$ such that $$u_0(\lambda x) = u_0(x), \ \ \forall x \in \mathbb{R} \setminus \{0\}.$$
(a) Suppose that $u$ is a weak solution in $\mathbb{R} \times [0,+\infty)$. Show that $v_{\lambda}(x,t) = u(\lambda x,\lambda t)$ is also weak solution of the equation in $\mathbb{R} \times [0,+\infty)$.
(b) Determine all functions $V$ of class $C^1$ such that $V (x/t)$ is a solution of the equation, for all $t>0$ and all $x \in \mathbb{R} $.
Help me with the details of the calculations. I'm having a hard time solving it! :)