If $p$ is congruent to $2 \pmod 3$, how can I prove that all $1 \le a \le p-1$ are cubic residues $\bmod p$?
Here's what I've done:
$1^3$ congruent to $1 \pmod p$ thus, 1 is a cubic residue. Also $(p-1)^3=(p-1) \pmod p$ implies $$(p-1)^3 - (p-1) = (p-1)[(p-1)^2 -1] = (p-1)(p^2 -2p) = p(p-1)(p-2) $$ implies $$p\mid(p-1)^3 -(p-1).$$ Thus $p-1$ is a cubic residue $\bmod p$. Now I don't know how to show for $1\lt a \lt p-1$ are all cubic residues when $p$ is congruent to $2\pmod 3$.