Let $p >3 $ be a prime number and $\Bbb F_p$ denote the finite field of order $p$. Prove that the polynomial $X^2 +X +1$ is reducible in $\Bbb F_p[X]$ if and only if $p ≡ 1\pmod 3.$
Attempt: $X^2 +X +1=\dfrac{X^3-1}{X-1}.$ Now if $x^3=1$ for some $x\in \Bbb F_p$; $x\in \Bbb F_p^*\implies x^{p-1}=1\implies 3\mid p-1\implies p\equiv 1\pmod 3$.
How to do the converse?