The limits are not equivalent. There are some mistakes in the referred question. Note, the title in the referred question
states
\begin{align*}
\lim_{x\to\infty}\left(\left(x^\color{blue}{5}+x^\color{blue}{4}\right)^{\frac{1}{6}}-\left(x^\color{blue}{5}-x^\color{blue}{4}\right)^{\frac{1}{6}}\right)
\end{align*}
whereas the body of the referred question states
\begin{align*}
\lim_{x\to\infty}\left(\left(x^\color{blue}{6}+x^\color{blue}{5}\right)^{\frac{1}{6}}-\left(x^\color{blue}{6}-x^\color{blue}{5}\right)^{\frac{1}{6}}\right)
\end{align*}
Taking the formula from the title we obtain
\begin{align*}
\lim_{x\to\infty}&\left(\left(x^5+x^4\right)^{\frac{1}{6}}-\left(x^5-x^4\right)^{\frac{1}{6}}\right)\\
&=\lim_{x\to\infty}\frac{\left(\sqrt[6]{x^5+x^4}-\sqrt[6]{x^5-x^4}\right)\left(\sqrt[6]{x^5+x^4}+\sqrt[6]{x^5-x^4}\right)}
{\sqrt[6]{x^5+x^4}+\sqrt[6]{x^5-x^4}}\\
&=\lim_{x\to\infty}\frac{\sqrt[3]{x^5+x^4}-\sqrt[3]{x^5-x^4}}
{x^{\frac{5}{6}}\left(\sqrt[6]{1+\frac{1}{x}}+\sqrt[6]{1-\frac{1}{x}}\right)}\\
&=\lim_{x\to\infty}\frac{x^{\frac{5}{6}}\left(\sqrt[3]{1+\frac{1}{x}}-\sqrt[3]{1-\frac{1}{x}}\right)}
{\sqrt[6]{1+\frac{1}{x}}+\sqrt[6]{1-\frac{1}{x}}}\\
\end{align*}
Hint: One answer in the referred question mixes up expressions $x^5-x^4$ with $x^6-x^5$ and similar things.
Here we show
\begin{align*}
\color{blue}{\lim_{x\to\infty}\left(\left(x^5+x^4\right)^{\frac{1}{6}}-\left(x^5-x^4\right)^{\frac{1}{6}}\right)=0}\tag{1}
\end{align*}
We recall
\begin{align*}
a^6-b^6&=\left(a-b\right)\left(a^5+a^4b+a^3b^2+a^2b^3+ab^4+b^5\right)\\
&=(a-b)\sum_{j=0}^5a^{5-j}b^{j}\tag{2}
\end{align*}
Letting
\begin{align*}
a&=\left(x^5+x^4\right)^{\frac{1}{6}}=x^{\frac{5}{6}}\left(1+\frac{1}{x}\right)^{\frac{1}{6}}\\
b&=\left(x^5-x^4\right)^{\frac{1}{6}}=x^{\frac{5}{6}}\left(1-\frac{1}{x}\right)^{\frac{1}{6}}\\
\end{align*}
we obtain expanding according to (2)
\begin{align*}
\color{blue}{\lim_{x\to\infty}}&\color{blue}{\left(\left(x^5+x^4\right)^{\frac{1}{6}}-\left(x^5-x^4\right)^{\frac{1}{6}}\right)}\\
&=\lim_{x\to\infty}\frac{\left(\left(x^5+x^4\right)^{\frac{1}{6}}-\left(x^5-x^4\right)^{\frac{1}{6}}\right)
\sum_{j=0}^5\left(x^5+x^4\right)^{\frac{5-j}{6}}\left(x^5-x^4\right)^{\frac{j}{6}}}
{\sum_{j=0}^5\left(x^5+x^4\right)^{\frac{5-j}{6}}\left(x^5-x^4\right)^{\frac{j}{6}}}\\
&=\lim_{x\to\infty}\frac{\left(x^5+x^4\right)-\left(x^5-x^4\right)}
{\sum_{j=0}^5\left(x^5+x^4\right)^{\frac{5-j}{6}}\left(x^5-x^4\right)^{\frac{j}{6}}}\\
&=\lim_{x\to\infty}\frac{2x^4}
{x^{\frac{25}{6}}\sum_{j=0}^5\left(1+\frac{1}{x}\right)^{\frac{5-j}{6}}\left(1-\frac{1}{x}\right)^{\frac{j}{6}}}\\
&=\lim_{x\to\infty}\frac{2}
{x^{\frac{1}{6}}\sum_{j=0}^5\left(1+\frac{1}{x}\right)^{\frac{5-j}{6}}
\left(1-\frac{1}{x}\right)^{\frac{j}{6}}}\\
&\,\,\color{blue}{=0}
\end{align*}
and the claim (1) follows.
Hint: The following is valid
\begin{align*}
\color{blue}{\lim_{x\to\infty}\left(\left(x^6+x^5\right)^{\frac{1}{6}}-\left(x^6-x^5\right)^{\frac{1}{6}}\right)=\frac{1}{3}}
\end{align*}
Some nice answers can be found here.