9

$\large \text{Introduction:}$

This summation is related to this other Bessel Summation question:

$$\mathrm{\sum\limits_{-\infty}^\infty Ai(x)=1}\ \text{and}\ \sum\limits_{-\infty}^0 \mathrm{Bi(x)}$$

$\large \text{Goal Sum:}$

The actual question uses the Modified Bessel Function of the Second Kind and corresponding Kelvin functions The sum may have a slightly different value. It would probably be easiest to use integral representations as alternative forms of the functions may not work well. I am looking for 2 solutions: one closed form for the kei(x) sum and one closed form for the ker(x) sum. This is because all other summations of just a function ended up with a closed form. Also try contour representations of which I am unfamiliar:

$${\sum_{\Bbb N} \text{ker}(x)+i\text{kei}(x)= \sum_1^\infty \text K_0\left(\sqrt ix\right)= \sum_{x=1}^\infty \int_0^\infty \frac{\cos\left(\sqrt{i}tx\right)}{\sqrt{t^2+1}}dt=\sum_{x=1}^\infty\int_0^\infty \cos\left(\sqrt ix\sinh(t)\right)dt=0.133691752819604391549325780771600891… - 0.725631207729182631737443031218031025… i}$$

Here is a summand plot. Note the sum starts for $x\ge 1$:

enter image description here

$\large \text{Abel-Plana Integral Representation:}$

Another method is to use the Abel-Plana formula which does work as shown here with the difference term evaluated. The simpler integral over the summand only has a complicated closed form. Here the integral of the summand in the last step can be found by evaluating the closed form antiderivative from $[-1,\infty]-[-1,1]$:

$${\sum_0^\infty \text{ker}(x+1)+i\ \text{kei}(x+1) =\frac{\text{ker}(1)+i \ \text{kei}(1)}{2}+\int_0^\infty \text {ker}(x+1)+i\ \text{kei}(x+1) dx+\int_0^\infty \frac{i\ \text{ker}(1-ix)-\ \text{kei}(1-ix)-i\ \text{ker}(1+ix)+\ \text{kei}(1+ix)}{e^{2\pi x}-1}dx=\frac12 \text K_0\left(\sqrt i\right)+\int_0^\infty \text K_0\left(\sqrt i(x+1) \right)dx +i\int_0^\infty \frac{\text K_0\left(\sqrt i(1-ix) \right)-\text K_0\left(\sqrt i(1+ix) \right)}{e^{2\pi x}-1}dx}$$

$\large \text{Other Integral Representations:}$

Using @Jack Barber’s Floor function integral solution in the following question gives this result. Please see the bolded “Kelvin functions” link for more Generalized Kelvin function information:

Evaluation of $$\sum_{x=0}^\infty \text{erfc}(x)$$

$$\sum_\Bbb N(\text{ker(x)}+ i\text{kei}(x))=\sum_\Bbb N \text K_0\left(\sqrt i x\right) =\sqrt[4]{-1}\int_0^\infty\lfloor x\rfloor \text{kei}_1(x)dx+\sqrt[-4]{-1}\int_1^\infty \lfloor x\rfloor \text{ker}_1(x)dx=(-1)^{-\frac34}\int_1^\infty \lfloor x\rfloor \text K_1\left(\sqrt[4]{-1} x\right)dx$$

Here is the integrand plot:

enter image description here

Let’s now use the Fractional Part/Sawtoothwave function. Note that the point discontinuities can be ignored as a result of the integral operator:

$$\text{frac}(x)=\mod{(x,1)}=\text{sawtoothwave}(x)=\boxed{\{x\}}=x-\lfloor x\rfloor\implies x-\{x\}=\lfloor x\rfloor$$

Therefore our goal sum can be expressed as the following. This is the closed form integral of $x\text{kei}_1(x),x\text{ker}_1(x)$. The integral on $[1,\infty]$ is the same as on $[0,\infty]-[0,1]$, but the integral of the $x\text{ker}_1(x)$ function integral on $[0,\infty]$ is just $-\frac\pi 2$ while for $x\text{ker}_1(x)$, it is just $0$ on the same interval meaning that:

$$\sum_1^\infty (\text{ker}(x)+i\text{kei}(x))= \sqrt[4]{-1}\int_0^\infty (x-\{x\}) \text{kei}_1(x)dx+\sqrt[-4]{-1}\int_1^\infty (x-\{x\}) \text{ker}_1(x)dx = (-1)^{-\frac34}\left(\frac\pi 2+\int_0^1 x \text{kei}_1(x)dx+\int_1^\infty\{x\} \text{kei}_1(x)dx \right)+ (-1)^{\frac 34}\left(\int_0^1 x \text{ker}_1(x)dx+\int_1^\infty\{x\} \text{ker}_1(x)dx \right) $$

$$\sum\limits_1^\infty \text K_0\left(\sqrt ix\right) = (-1)^{-\frac34}\int_1^\infty (x-\{x\})\text K_1\left(-\sqrt[4]{-1} x\right)dx =\sqrt[4]{-1}\left(\frac{i\pi}2+\int_0^1x \text K_1\left(\sqrt[4]{-1} x\right)+\int_1^\infty\{x\}\text K_1\left(\sqrt[4]{-1} x\right)dx\right)$$

There are many alternate forms for the floor function, so many more integral representations are possible in terms of related functions.

Here is a plot of that Fractional Part function times the Bessel-Kelvin type function integrand:

enter image description here$\large \text{Conclusion:}$

Note that I could have made a typo. An exact form answer is needed and a closed form is optional. This question was found as the summand graph decreases rapidly and after a lot of terms, and converges quickly to over $50$ digits in just the first $300$ terms. We now have $2$ working integral representations of the constant, so how can we evaluate them or the sum representations? Please correct me and give me feedback!

Note that $\sqrt[-2]2=\frac1{\sqrt 2} $ is easier for MathJax $From @Yuri’s help, here is an integral representation for:

$$\sum_\Bbb N \text{ker}(x)=\int_0^\infty \frac{e^{\cosh(x)\sqrt[-2]2} \cos(\cosh(x) \sqrt[-2]2)}{\big(e^{\cosh(x) \sqrt[-2]2} \cos(\cosh(x) \sqrt[-2]2) - 1\big)^2 + e^{\sqrt2\cosh(x)} \sin^2(\cosh(x) \sqrt[-2]2)} - \frac 1{\big(e^{\cosh(x) \sqrt[-2]2} \cos(\cosh(x) \sqrt[-2]2) - 1\big)^2 + e^{\sqrt2 \cosh(x)} \sin^2(\cosh(x) \sqrt[-2]2)}dx $$

$$\sum_\Bbb N \text{kei}(x)=-\int_0^\infty \frac{e^{\cosh(x)\sqrt[-2]2} \sin(\cosh(x) \sqrt[-2]2)}{\big(e^{\cosh(x) \sqrt[-2]2} \cos(\cosh(x) \sqrt[-2]2) - 1\big)^2 + e^{\sqrt2 \cosh(x)} \sin^2(\cosh(x) \sqrt[-2]2)} dx$$

Тyma Gaidash
  • 12,081
  • 1
    Using Mellin transform, one can also express $$S=\frac{\gamma}{2}-\ln \left(2\right)-\frac{\ln \left(\pi \right)}{2}+\frac{i \pi}{8}+\frac{\sqrt{-i}}{2}\pi+\frac12\sum_{p=1}^\infty\left(-i\right)^{p} \binom{2 p}{p} \frac{\zeta \left(2 p+1 \right)}{\left(4 \pi \right)^{2 p}}$$ which converges even faster. Real and imaginary parts can easily be extracted. – Paul Enta Sep 26 '21 at 20:57
  • @PaulEnta I would greatly appreciate the solution with the real and imaginary parts explicitly extracted. Thanks. Do you have any other ideas? – Тyma Gaidash Sep 26 '21 at 20:58
  • 1
    \begin{equation} \Re(S)=\frac{\gamma}{2}-\ln \left(2\right)-\frac{\ln \left(\pi \right)}{2}+\frac{\pi}{2\sqrt{2}}+\frac12\sum_{q=1}^\infty\left(-1\right)^{q} \binom{4q}{q} \frac{\zeta \left(4q+1 \right)}{\left(4 \pi \right)^{4q}} \end{equation} \begin{equation} \Im(S)=\frac{ \pi}{8}-\frac{\pi}{2\sqrt{2}}+\frac12\sum_{q=1}^\infty\left(-1\right)^{q} \binom{4q-2}{2q-1} \frac{\zeta \left(4q-1 \right)}{\left(4 \pi \right)^{4q-2}} \end{equation} But no other idea... – Paul Enta Sep 26 '21 at 21:05
  • Would you like to post an answer using your method? – Тyma Gaidash Sep 26 '21 at 21:26
  • Yes, i will do it, in case someone can improve the result. – Paul Enta Sep 26 '21 at 21:29
  • 1
    I will wait until the end of the bounty and then award. Thanks for the help! – Тyma Gaidash Sep 26 '21 at 21:34
  • 1
    With respect to the Abel Plana formula approach, Mathematica gives the following closed form representation of one of the related integrals where $\pmb{L}{n}(z)$ is the modified Struve function: $\int\limits_0^\infty K_0\left(\sqrt{i},(x+1)\right),dx$ $=\left(\frac{1}{4}-\frac{i}{4}\right) \pi \left(-(1+i) \pmb{L}{-1}\left(\sqrt[4]{-1}\right) K_0\left(\sqrt[4]{-1}\right)-(1+i) \pmb{L}_0\left(\sqrt[4]{-1}\right) K_1\left(\sqrt[4]{-1}\right)+\sqrt{2}\right)$ $=-0.0649389-0.448419,i$. – Steven Clark Sep 28 '21 at 22:32
  • @StevenClark Stack Exchange is back up. Notice how I gave this link. How about the other integral for the Abel Plana approach? For the floor function approach, there is a complicated Meijer G answer, but still no idea for the actual floor function integral. Do you have any ideas? – Тyma Gaidash Sep 29 '21 at 03:19
  • I saw your link, but I didn't understand why you were evaluating $\int\limits_0^\infty \text{ker}(x+1)+i,\text{kei}(x+1)+K_0\left(\sqrt{i},(x+1)\right),dx$ instead of just $\int_0^\infty \text {ker}(x+1)+i\ \text{kei}(x+1),dx$ or $\int\limits_0^\infty K_0\left(\sqrt{i},(x+1)\right),dx$. I haven't made any progress at evaluating the integral $\int_0^\infty \frac{\text K_0\left(\sqrt i(1-ix) \right)-\text K_0\left(\sqrt i(1+ix) \right)}{e^{2\pi x}-1}dx$. I haven't yet looked at the floor function approach. – Steven Clark Sep 29 '21 at 04:27
  • @StevenClark I thought I equated the two integrals. Let me fix this if needed. Thanks for the help. – Тyma Gaidash Sep 29 '21 at 13:14

2 Answers2

5

To evaluate \begin{equation} S=\sum_{n=1}^\infty K_0(n\sqrt{i}) \end{equation} we can use the Mellin transform \begin{equation} \int_{0}^{\infty}t^{s-1}K_0\left(t\right)\,dt=2^{s-2}\Gamma \left(\frac{s}{2}\right)^2 \end{equation} ($\Re s>0$) to write \begin{equation} K_0(n\,e^{i\pi/4})=\frac{1}{2i\pi}\int_{c-i\infty}^{c+i\infty}2^{s-2}\Gamma\left(\frac{s}{2}\right)^2(n\,e^{i\pi/4})^{-s}\,ds \end{equation} with $\Re c>0$. Then, by choosing $c>1$, on may express \begin{align} S&=\frac{1}{2i\pi}\sum_{n=1}^\infty \int_{c-i\infty}^{c+i\infty}2^{s-2}\Gamma\left(\frac{s}{2}\right)^2e^{-is\pi/4}n^{-s}\,ds\\ &=\frac{1}{2i\pi}\int_{c-i\infty}^{c+i\infty}2^{s-2}\Gamma\left(\frac{s}{2}\right)^2\zeta(s)e^{-is\pi/4}\,ds \end{align} by changing the order of integration and summation. To evaluate the integral, one can close the contour with a semi-large circle on the left in the complex plane. It can be shown that the contribution of this part of the contour vanishes as the radius tends to infinity. The poles of the function $f(s)=2^{s-2}\Gamma\left(\frac{s}{2}\right)^2\zeta(s)e^{-is\pi/4}$ are situated at $s=1$ (simple) and $s=-2p$ (double) with $p=0,1,2,\cdots$. The calculation of the residues poses no difficulties: \begin{align} \operatorname{Res}\left( f(s),s=1 \right)&=\frac{1-i}{2\sqrt{2}}\pi\\ \operatorname{Res}\left( f(s),s=0 \right)&=\frac\gamma2+i\frac{\pi}{8}-\ln2-\frac{\ln\pi}{2}\\ \operatorname{Res}\left( f(s),s=-2p \right)&=\frac{e^{ip\pi/2}}{2^{2p}}\frac{\zeta'(-2p)}{(p!)^2} \end{align} where $p\ge1$ is an integer. The expression for the derivative of the zeta function at the negative even integers is see here \begin{equation} \zeta'(-2p)=\frac{(-1)^p (2 p)!}{2^{2p+1}\pi^{2p}}\zeta(2p+1) \end{equation} We obtain then \begin{equation} S=\frac{1-i}{2\sqrt{2}}\pi+\frac\gamma2+i\frac{\pi}{8}-\ln2-\frac{\ln\pi}{2}+\sum_{p=1}^\infty\frac{(-1)^pe^{ip\pi/2}}{2^{2p}}\frac{ (2 p)!}{(p!)^2}\frac{\zeta(2p+1)}{2^{2p+1}\pi^{2p}} \end{equation} which can be written as \begin{equation} S=\frac{\gamma}{2}-\ln \left(2\right)-\frac{\ln \left(\pi \right)}{2}+\frac{i \pi}{8}+\frac{\sqrt{-i}}{2}\pi+\frac12\sum_{p=1}^\infty\left(-i\right)^{p} \binom{2 p}{p} \frac{\zeta \left(2 p+1 \right)}{\left(4 \pi \right)^{2 p}} \end{equation} which converges faster than the initial Bessel function series. On have then \begin{align} \sum_{n=1}^\infty\operatorname{ker}(n)&=\frac{\gamma}{2}-\ln \left(2\right)-\frac{\ln \left(\pi \right)}{2}+\frac{\pi}{2\sqrt{2}}+\frac12\sum_{q=1}^\infty\left(-1\right)^{q} \binom{4q}{2q} \frac{\zeta \left(4q+1 \right)}{\left(4 \pi \right)^{4q}}\\ \sum_{n=1}^\infty\operatorname{kei}(n)&=\frac{ \pi}{8}-\frac{\pi}{2\sqrt{2}}+\frac12\sum_{q=1}^\infty\left(-1\right)^{q} \binom{4q-2}{2q-1} \frac{\zeta \left(4q-1 \right)}{\left(4 \pi \right)^{4q-2}} \end{align} To go further, one could expand the zeta function in series and change the order of summation: \begin{align} J&=\sum_{p=1}^\infty\left(-i\right)^{p} \binom{2 p}{p} \frac{\zeta \left(2 p+1 \right)}{\left(4 \pi \right)^{2 p}}\\ &=\sum_{p=1}^\infty \binom{2 p}{p} \frac{\left(-i\right)^{p}}{\left(4 \pi \right)^{2 p}}\sum_{n=1}^\infty\frac{1}{n^{2p+1}}\\ &=\sum_{n=1}^\infty\sum_{p=1}^\infty \binom{2 p}{p} \frac{\left(-i\right)^{p}}{\left(4 \pi \right)^{2 p}}\frac{1}{n^{2p+1}} \end{align} by denoting \begin{equation} X=\frac{-i}{16\pi^2n^2} \end{equation} we have $\left|X\right|<1/4$ and by using the classical generating function for the central binomial coefficient \begin{align} J&=\sum_{n=1}^\infty\frac{1}{n}\sum_{p=1}^\infty\binom{2 p}{p}X^p\\ &=\sum_{n=1}^\infty\frac{1}{n}\left[\frac{1}{\sqrt{1-4X}}-1\right]\\ &=\sum_{n=1}^\infty\frac{1}{n}\left[\frac{1}{\sqrt{1+\frac{i}{ 4\pi^2n^2}}}-1\right]\\ &=\sum_{n=1}^\infty\left[\frac{2\pi}{\sqrt{4\pi^2n^2+i}}-\frac{1}{n}\right] \end{align} and thus \begin{equation} S=\frac{\gamma}{2}-\ln \left(2\right)-\frac{\ln \left(\pi \right)}{2}+\frac{i \pi}{8}+\frac{\sqrt{-i}}{2}\pi+\frac12\sum_{n=1}^\infty\left[\frac{2\pi}{\sqrt{4\pi^2n^2+i}}-\frac{1}{n}\right] \end{equation} This expression could probably be established using a Poisson summation technique, as it is similar to a summation of the Fourier cosine transform of the Bessel function. It can be deduced from the identity (8.526.1) of Gradshteyn & Ryzhik. Its convergence is however much slower, but it does not involve special functions.

By extracting the real and imaginary parts of this expression, one obtains \begin{align} \sum_{n=1}^\infty\operatorname{ker}(n)&=\frac{\gamma}{2}-\ln \left(2\right)-\frac{\ln \left(\pi \right)}{2}+\frac{\pi}{2\sqrt{2}}+\frac\pi{\sqrt2}\sum_{n=1}^\infty\left[\frac{ \sqrt{\sqrt{16 \pi^{4} n^{4}+1}+4 \pi^{2} n^{2}}}{\sqrt{16 \pi^{4} n^{4}+1}}-\frac1n\right] \\ \sum_{n=1}^\infty\operatorname{kei}(n)&=\frac{ \pi}{8}-\frac{\pi}{2\sqrt{2}}-\frac\pi{\sqrt2}\sum_{n=1}^\infty\frac{ \sqrt{ \sqrt{16 \pi^{4} n^{4}+1}-4 \pi^{2} n^{2}}}{\sqrt{16 \pi^{4} n^{4}+1}} \end{align}

Paul Enta
  • 14,113
  • 1
    [+1] I will probably award/check your answer, but will wait until the grace period is active. Thanks! I care more about alternative forms, so could you please split your final $$S=\frac{\gamma}{2}-\ln \left(2\right)-\frac{\ln \left(\pi \right)}{2}+\frac{i \pi}{8}+\frac{\sqrt{-i}}{2}\pi+\frac12\sum_{n=1}^\infty\left[\frac{2\pi}{\sqrt{4\pi^2n^2+i}}-\frac{1}{n}\right] $$ sum into explicit real and imaginary parts? The $\frac1n$ looks almost like a Stieltjes constant. – Тyma Gaidash Sep 27 '21 at 00:01
  • Thanks! The decomposition is now given in the text. – Paul Enta Sep 27 '21 at 11:52
  • This is very good effort. If you have any other insights, then please add them in, but you do not have to. Thanks again! – Тyma Gaidash Sep 27 '21 at 18:12
  • The terms in the sum asymptotically equals $\dfrac 1{n^2}.$ To obtain 50 correct signs, we need more than $10^{25}$ terms. – Yuri Negometyanov Sep 29 '21 at 08:21
  • 1
    @YuriNegometyanov This is certainly correct for the latter series. The previous one (with the zeta function) is an alternating series which terms behaves as $p^{-1/2}(2\pi)^{-2p}$ when $p\to\infty$. The 31st term is already smaller than $10^{-50}$. – Paul Enta Sep 29 '21 at 09:02
  • 1
    Hello, your answer gives 2 good series representations. You also have a bit less reputation and put goof effort into the problem, so you win the bounty, but the other answer will be accepted as it provides a good integral representation. – Тyma Gaidash Sep 29 '21 at 22:24
2

Is known the representation $$K_0(z)=\int\limits_0^\infty e^{-z\cosh t}\,\text dt,\qquad \left(|\arg z|<\dfrac\pi2\right).\tag1$$

Then $$I=\sum\limits_{k=1}^\infty K_0\left(\sqrt i k\right) =\int\limits_0^\infty\sum\limits_{k=1}^\infty e^{-\sqrt i\,k\cosh t}\,\text dt =\int\limits_0^\infty\dfrac{e^{-\sqrt i\cosh t}}{1-e^{-\sqrt i\cosh t}}\,\text dt =\int\limits_0^\infty\dfrac{\text dt}{e^{\frac1{\sqrt2}(1+i)\cosh t}-1},$$ $$I=\dfrac12\int\limits_{-\infty}^\infty\dfrac{\text dt}{e^{\frac1{\sqrt2}(1+i)\cosh t}-1},\tag2$$ with the numeric value

The numeric value

wherein calculating in the bounds $(-6,6)$ provides more than $\,50\,$ right digits.

Analysis shows, that the best way to calculate the integral $(2)$ is the numeric one.

Really, the substitution $\,t=\dfrac{13}{10}\,$ leads to the representation $$I=\dfrac{13}{20}\int\limits_{-\infty}^\infty\dfrac{\text dz}{e^{\frac{1+i}{\sqrt2}\cosh\frac{13}{10}z}-1},\tag3$$ which contains the factor $e^{-z^2}.$

Exponential factor

This allows to use the Hermite's quadrature formula $$\int\limits_{-\infty}^\infty e^{-z^2}f(z)\,\text dz\approx\sum\limits_{i=1}^{n} w_i f_(z_i),\tag4$$ where $\,z_i\,$ are the roots of the Hermit's polynomial $H_n(z),$ which should provide more than $\,50\,$ correct digits for $\,n=30- 50.\,$

The alternative way is the substitution $$\;t=\operatorname{arccosh}\dfrac1{z},\quad z=\dfrac1{\cosh t},\tag5$$ which transforms the integral $(2)$ into the singular one $$I=\int\limits_0^1 \dfrac{\text dz}{\left(e{\large\mathstrut^{\frac{1+i}{2z}}}-1\right)z\sqrt{1-z^2}}.\tag6$$ However, using the Chebyshev's quadrature in the form $$\int\limits_0^1\dfrac{f(z)\,\text dz}{\sqrt{z(1-z)}} =\dfrac\pi n\sum\limits_{j=0}^n f\left(\cos^2\dfrac{2j-1}{2n}\,\pi\right)\tag7$$ gives $\,49\,$ correct digits for $\,n=1800.\,$

Chebyshev's quadrature

  • I will have to now split the bounty and checkmark unless I figure out how to split bounties. Both answers are good, but could you please explicitly find $$\sum_\Bbb N\text{ker}(x)$$ and $$\sum_\Bbb N \text{kei}(x)$$ where $$\Bbb N=1,2,3,…,\infty$$? That is the main point of the question. Finally, is it possible to evaluate the integrals via closed form or some other non-closed “exact” form representation? This is optional, but thanks. – Тyma Gaidash Sep 29 '21 at 13:06
  • 1
    @TymaGaidash Just now I try to improve the answer – Yuri Negometyanov Sep 29 '21 at 13:57
  • @TymaGaidash I've just finished the planned work and can do that. – Yuri Negometyanov Sep 29 '21 at 18:22
  • 1
    You answered a bit later, but gave a good integral representation. Here are the real and imaginary parts of the integral. These will give integral representations of the Kelvin Ker and Kelvin Kei sums. The other answer has more effort, but I will accept your answer. – Тyma Gaidash Sep 29 '21 at 22:36