same story, If we have $s$ circle with the diameter $AB$ (with length $1$) and the center $O$, then we can approximate $\operatorname{chord} AC$ where $x$ represents the value of the $\angle AOC$ in degrees, and $t=90-\frac{x}{2}$.So formula is $1-\frac{2\left(\frac{{\pi}}{360}t\right)^{2}}{\left(\dfrac{\left(\frac{\pi}{360}\right)}{\sin\left(\frac{\pi}{360}\right)} +3.222\cdot 10^{-11}\cdot \left(t^{2}+\frac{239t^4}{83.9^4}+\frac{10t^6}{83.08^6}-1\right)\right)^{\,2t^{2}}}$
For example, if $x=60(t=60)$, we will get $0.499999996\ldots$,or $x=120,(t=30)$ we will get $0.86602540377\dots$.So if $x<360$ then the value of the error cannot be greater than $4.55\cdot 10^{-9}$
Is there formula with a more precise approximate value for $\sin\frac{{\pi}}{360}x$ than mine?
and another question whether it can be simplified?