In many tetration/power tower integrals, one sees a general form of the following. Let this new function be notation used to show the connection between the general result and special cases using types of Incomplete Gamma functions.
The goal is to find an integral representation of the general case or a special case.
If this is not possible, then maybe a special case of it has an integral representation. Note there are ways to put the summand into other functions, but this way is simple. Please note that I will use a made up general “T” function to show how each integral below it is a special case of the following:
$$T_{p,q}^{r,s}\left(_{\ \ a,b,c,d}^{A,B,C,D}\right)=\sum_{n=0}^\infty \frac{(pn+q)^{rn+s}Γ(An+B,Cn+D)}{Γ(an+b,cn+d)}$$
Here is motivation that integral representations are possible. Note that I will use the primitive for simplicity:
$$\int (cx)^{ax^b}dx=\sum_{n=0}^\infty\frac{(-a)^n Q(n+1,-(bn+1)\ln(cx))}{c^{bn+1}(bn+1)^{n+1}}= \frac{1}{-ac^{b-1}}\sum_{n=0}^\infty\frac{ (-ac^bbn-ac^b)^{n+1}Γ(n+1,-bn\ln(cx)-\ln(cx))}{Γ(n+1,0)} = -\frac{1}{ac^{b-1}} T_{-abc^b,-ac^b}^{1,1}\left(_{\ \ 1,1,0,0}^{1,1,-b\ln(cx),-\ln(cx)}\right) $$
$$\int a^{ta^t}dt=t+\frac{1}{\ln(a)}\sum_{n=0}^\infty \frac {(-1)^n Q(n+1,-nt\,\ln(a))}{n^{n+1}}= t-\frac{1}{\ln(a)}\sum_{n=0}^\infty \frac {(-n)^{-n-1} Γ(n+1,-nt\,\ln(a))}{Γ(n+1,0)} =t-\frac{1}{\ln(a)} T_{-1,0}^{-1,-1}\left(_{\ \ 1,1,0,0}^{1,1,-t\,\ln(a),0}\right) $$
$$\int \frac{dx}{xe^x-1}=\sum_{n=0}^\infty \frac{Γ(n+1,-nx)}{n^{n+1}}= \sum_{n=0}^\infty n^{-n-1} Γ(n+1,-nx)= T_{1,0}^{-1,-1}\left(_{0,1,0,0}^{1,1,-x,0}\right) $$
$$\int \text W(\ln(x))dx=\text W(\ln(x))(x-1)+\sum_{n=1}^\infty\frac{(-1)^n Q(n+1,-n\,\text W(\ln(x))}{n^{n+1}}= \text W(\ln(x))(x-1) -\sum_{n=1}^\infty\frac{(-n)^{-n-1}Γ(n+1,-n\,\text W(\ln(x))}{Γ(n+1)} = T_{-1,0}^{-1,-1}\left(_{1,1,0,0}^{1,1, -\,\text W(\ln(x)),0}\right) $$
Miscellaneous sums of interest. Subfactorial: $$\sum_{n=2}^\infty \frac{1}{!n}=e\sum_{n=0}^\infty \frac{1}{Γ(n+2,-1)}=e\,T_{p,q}^{0,0}\left(_{1,2,0,-1}^{0,1,0,0}\right)$$
$$\sum_{n=-\infty}^{-1} Γ(n,n)=\sum_{n=0}^\infty Γ(-n-1,-n-1)= T_{p,q}^{0,0}\left(_{-1,-1,-1,-1}^{\quad 0,1,0,0}\right) $$
I already know about the Abel-Plana formula, but it offers no new insights. There are other theorems that could possibly be used. How can the integral representations for the goal sum be found? If the integral representation is indeed impossible, then what is an integral representation for a special case? This will help us solve similar problems. Please correct me and give me feedback!