Using the General Leibniz rule,
$$\mathrm D^n\operatorname{sech}^2=\sum_{k=0}^n\binom{n}{k}~\mathrm D^{n-k}\operatorname{sech}~\cdot~\mathrm D^{k}\operatorname{sech}$$
So our problem reduces to finding $\mathrm D^n \operatorname{sech}$.
To clean up the notation a bit, let $f_n(\cdot,\cdot)$ be a polynomial such that
$$\mathrm D^n(\operatorname{sech})(t)=f_n(\operatorname{sech}(t),\tanh(t))$$
The first few of them are
$$ \begin{array}{l}
f_{0}( x,y) =x\\
f_{1}( x,y) =-xy\\
f_{2}( x,y) =-x^{3} +xy^{2}\\
f_{3}( x,y) =5x^{3} y-xy^{3}\\
f_{4}( x,y) =5x^{5} -18x^{3} y^{2} +xy^{4}\\
f_{5}( x,y) =-61x^{5} y+58x^{3} y^{3} -xy^{5}\\
f_{6}( x,y) =-61x^{7} +479x^{5} y^{2} -179x^{3} y^{4} +xy^{6}\\
f_{7}( x,y) =1385x^{7} y-3111x^{5} y^{3} +543x^{3} y^{5} -xy^{7}\\
f_{8}( x,y) =1385x^{9} -19\ 028x^{7} y^{2} +18\ 270x^{5} y^{4} -1636x^{3} y^{6} +xy^{8}
\end{array}$$
Hmm. Some patterns are appearing in the first and last terms, but the middle terms are a bit murky. Still, it is clear that only $\operatorname{sech}$ and $\tanh$ will be present in the result. With that in mind it is pertinent to try to evaluate
$$\mathrm D(\operatorname{sech}^l\tanh^m)$$
Where the superscript denotes exponentiation, not composition. One finds
$$\mathrm D(\operatorname{sech}^l\tanh^m)=m\operatorname{sech}^{2+l}\tanh^{m-1}-l\operatorname{sech}^{l}\tanh^{m+1}$$
So in our polynomials, terms of the form $x^ly^m$ in $f_n(x,y)$ change into $mx^{2+l}y^{m-1}-lx^ly^{m+1}$ in $f_{n+1}(x,y)$. IMPORTANT: This also makes it clear that $f_n(x,y)$ will only contain terms of the form $x^{n+1-k}y^k$. This suggests the amazing recurrence relation
$$f_{n}(x,y)=x^2~\partial_y f_{n-1}(x,y)-xy~\partial_xf_{n-1}(x,y)$$
So, letting
$$f_n(x,y)=\sum_{k=0}^{n+1}a_{n,k}x^{n+1-k}y^k$$
We have
$$\sum_{k=0}^{n+1}a_{n,k}x^{n+1-k}y^k=x^2\sum_{k=0}^{n}a_{n-1,k}~k~x^{n-k}y^{k-1}-xy\sum_{k=0}^{n}a_{n-1,k}(n-k)x^{n-k-1}y^k$$
In the first sum we now change index $k= j+1$ and in the second sum we change $k=l-1$ to obtain
$$\sum _{k=0}^{n+1} a_{n,k} x^{n+1-k} y^{k} $$ $$=x^{2}\sum _{j=-1}^{n-1} a_{n-1,j+1}( j+1) x^{n-j-1} y^{j} -xy\sum _{l=1}^{n+1} a_{n-1,l-1}( n-l+1) x^{n-l} y^{l-1}$$
Removing the first summand from the first sum (since it's zero), renaming our indices, and distributing the outer factors we get
$$\sum _{k=0}^{n+1} a_{n,k} x^{n+1-k} y^{k} =\begin{matrix}
\sum _{k=0}^{n-1} a_{n-1,k+1}( k+1) x^{n+1-k} y^{k}\\
-\sum _{k=1}^{n+1} a_{n-1,k-1}( n-k+1) x^{n+1-k} y^{k}
\end{matrix}$$
Adding and subtracting some terms we get
$$\sum _{k=0}^{n+1} a_{n,k} x^{n+1-k} y^{k} =\begin{matrix}
-a_{n-1,n+1}( n+1) xy^{n} -a_{n-1,n+2}( n+2) y^{n+1}\\
+\sum _{k=0}^{n+1} a_{n-1,k+1}( k+1) x^{n+1-k} y^{k}\\
+a_{n-1,-1}( n+1) x^{n+1}\\
-\sum _{k=0}^{n+1} a_{n-1,k-1}( n-k+1) x^{n+1-k} y^{k}
\end{matrix}$$
But for obvious reasons, we must have
$$a_{n-1,n+1}=a_{n-1,n+2}=a_{n-1,-1}=0$$
So in all we have
$$\sum _{k=0}^{n+1} a_{n,k} x^{n+1-k} y^{k} =\sum _{k=0}^{n+1}( a_{n-1,k+1}( k+1) -a_{n-1,k-1}( n-k+1)) x^{n+1-k} y^{k}$$
And so by a linear algebra argument we have a recurrence relation
$$\boxed{a_{n,k}=(k+1)a_{n-1,k+ 1}-(n-k+1)a_{n-1,k-1}}$$
With an initial conditions $a_{0,0}=1,a_{0,1}=0$ and boundary conditions
$$a_{n,k}=0\text{ if }k<0\text{ or }k>n+1$$
A quick test: we know that for example we should have
$$a_{1,0}=0,a_{1,1}=-1,a_{1,2}=0$$
We have
$$a_{1,0}=a_{0,1}-(1-0+1)a_{0,-1}=0$$
$$a_{1,1}=2a_{0,2}-(1-1+1)a_{0,0}=-1$$
$$a_{1,2}=3a_{0,3}-(1-2+1)a_{0,1}=0$$
Our formula is working as expected. So using this definition of $a_{n,k}$ we write
$$\mathrm{D}^n(\operatorname{sech})=\sum_{k=0}^{n+1}a_{n,k}\operatorname{sech}^{n+1-k}\tanh^k$$
Therefore finally,
$$\mathrm{D}^n(\operatorname{sech}^2)=\sum_{k=0}^n\left[\binom{n}{k}\left(\sum_{j=0}^{n-k+1}a_{n-k,j}\operatorname{sech}^{n-k+1-j}\tanh^{j}\right)\left(\sum_{l=0}^{k+1}a_{k,l}\operatorname{sech}^{k+1-l}\tanh^l\right)\right]$$
I don't think we can simplify this any further!