This problem is taken from Hoffman kunz linear algebra section $5.3$ page no $155$
Let $\sigma$ and $\tau$ be the permutations of degree $4$ defined by
$$\sigma1= 2, \sigma2= 3,\sigma3= 4, \sigma3= 4$$
$$\tau1=3,\tau2=1,\tau3=2,\tau4=4$$
$(a)$ Is $\sigma$ odd or even? Is $\tau $ odd or even?
My attempt :$\sigma1= 2, \sigma2= 3,\sigma3= 4, \sigma3= 4 \implies \begin{pmatrix}1&2&3&4\\2&3&4&1\end{pmatrix}$
$$\sigma=(1234)$$
$$\sigma=\underbrace{(1234)}_{4 \text{number}}$$
$4$ is even $\implies \sigma$ is even
similarly $\tau=(132)$ ,$\tau=\underbrace{(132)}_{3 \text{number}}$ $3$ is odd implies $\tau$ is odd