I want to find out wether the following integral converges
$ \displaystyle \int_{0}^{\infty} \frac{x^2 \ln(\sin^2(x))}{(1+x^2)^2} \mathrm{d}x \tag{1} $
The integral above converges iff the following integral converges.
$ \displaystyle \int_{0}^{\infty} \frac{x^2 \ln \left( \frac{\sin^2(x)}{x^2} \right) }{(1+x^2)^2} \mathrm{d}x \tag{2} $
Since we have $ \frac{\sin^2(x)}{x^2} <1 $ for all $ x \in \mathbb{R} $, we can say that
$ \displaystyle \ln \left( \frac{\sin^2(x)}{x^2} \right) =- \sum_{k=1}^{\infty} \frac{1}{k} \left(1- \frac{\sin^2(x)}{x^2} \right)^k \tag*{} $
At this point, if we can somehow prove that
$\displaystyle \int_{0}^{\infty} \frac{x^2}{(1+x^2)^2} \left(1- \frac{\sin^2(x)}{x^2} \right)^k < \frac{1}{k^{\epsilon}} \tag*{} $
For some $ \epsilon >0 $, Then the claim of convergence of the original integral will follow, but I can't seem to find a way to do so.
P.S. Wolframalpha has given up on providing a numerical estimate for the integral in (1), but says that the integral in (2) diverges, which is kind of puzzling.