First note that
$$\int_0^{2\pi}\log\left(\sin^2(2\theta)\right)\,d\theta=\frac12\int_0^{4\pi}\log \left(\sin^2 (\theta)\right) \,d\theta$$
Next, exploiting the fact that $\sin^2(x\pm n\pi)=\sin^2 (x)$ for all integer values of $n$, reveals that
$$\frac12 \int_0^{4\pi}\log\left( \sin^2(x)\right)\,dx=2\int_0^{\pi}\log\left( \sin^2(x)\right)\,dx$$
Now, using $\log (x^n)=n\log (x)$, for $x>0$ shows
$$2\int_0^{\pi}\log\left(\sin^2(\theta)\right)\,d\theta=4\int_0^{\pi}\log\left(\sin (\theta)\right)\,d\theta=-4\pi \log (2)$$
The integral on the right-hand side is [well-know] and is equal $-\pi \log (2)$ from which we obtain the expected result. To show this we note that
$$\begin{align}
\int_0^{\pi}\log\left(\sin (\theta)\right)\,d\theta&=\int_0^{\pi/2}\log\left(\sin (\theta)\right)\,d\theta+\int_{\pi/2}^{\pi}\log\left(\sin (\theta)\right)\,d\theta \tag 1\\\\
&=\int_0^{\pi/2}\log\left(\sin (\theta)\right)\,d\theta+\int_{0}^{\pi/2}\log\left(\cos (\theta)\right)\,d\theta \tag 2\\\\
&=\int_0^{\pi/2}\log \left(\sin( x) \cos (x)\right)\,dx \tag 3\\\\
&=\int_0^{\pi/2}\log \left(\frac12 \sin (2x)\right)\,dx \tag 4\\\\
&=-\frac{\pi}{2}\log (2)+\int_0^{\pi/2}\log \left(\sin (2x)\right)\,dx \tag 5\\\\
&=-\frac{\pi}{2}\log (2)+\frac12 \int_0^{\pi}\log \left(\sin (x)\right)\,dx\tag 6\\\\
\frac12\int_0^{\pi}\log\left(\sin (\theta)\right)\,d\theta&=-\frac{\pi}{2}\log (2) \tag 7\\\\
\int_0^{\pi}\log\left(\sin (\theta)\right)\,d\theta&=-\pi \log (2) \tag 8
\end{align}$$
$(1)$ Split the integral
$(2)$ Change variables ($x \to x+\pi/2$) in the second integral and use $\sin (x+\pi/2)=\cos (x)$.
$(3)$ Combine integrals and exploit $\log (x)+\log (y)=\log (xy)$.
$(4)$ Exploit $\sin (2x)=2 \sin (x)\cos (x)$.
$(5)$ Use $\log( xy) =\log (x )+\log (y)$ and compute the integral of $\log \left(\frac12\right)$.
$(6)$ Change variables $x\to 2x$.
$(7)$ Subtract $\frac12 \int_0^{\pi/2}\log\left( \sin (x)\right) dx$ from both sides.
$(8)$ Multiply both sides by $2$.