$\newcommand{\+}{^{\dagger}}
\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\right\vert\,}
\newcommand{\ket}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{\sum_{j = 2}^{\infty}\prod_{k = 1}^{j}{2k \over j + k - 1} = \pi:\ {\large ?}}$
\begin{align}
&\color{#c00000}{\sum_{j = 2}^{\infty}\prod_{k = 1}^{j}{2k \over j + k - 1}}
=\sum_{j = 2}^{\infty}2^{j}\,
{1 \over j}\,{2 \over j + 1}\cdots{j \over 2j - 1}=\sum_{j = 2}^{\infty}2^{j}\,{j! \over \pars{2j - 1}!/\pars{j - 1}!}
\\[3mm]&=\sum_{j = 2}^{\infty}2^{j}\,
{\Gamma\pars{j + 1}\Gamma\pars{j} \over \Gamma\pars{2j}}
=\sum_{j = 2}^{\infty}2^{j}\,j
{\Gamma\pars{j}\Gamma\pars{j} \over \Gamma\pars{2j}}
=\sum_{j = 2}^{\infty}2^{j}\,j\,{\rm B}\pars{j,j}
\\[3mm]&=2\lim_{x \to 2}\bracks{%
\partiald{}{x}\color{#00f}{\sum_{j = 2}^{\infty}x^{j}\,{\rm B}\pars{j,j}}}
\end{align}
where $\ds{\Gamma\pars{z}}$ and
$\ds{{\rm B}\pars{x,y} = \int_{0}^{1}t^{x - 1}\pars{1 - t}^{y - 1}\,\dd t = {\Gamma\pars{x}\Gamma\pars{y} \over \Gamma\pars{x + y}}}$
are the
Gamma and
Beta Functions, respectively. $\ds{\Re\pars{x} > 0, \Re\pars{y} > 0}$. We used the property
$\ds{\Gamma\pars{z} = \Gamma\pars{z + 1}/z}$
\begin{align}
&\color{#00f}{\sum_{j = 2}^{\infty}x^{j}\,{\rm B}\pars{j,j}}=
\sum_{j = 2}^{\infty}x^{j}\,\int_{0}^{1}t^{j - 1}\pars{1 - t}^{j - 1}\,\dd t
=\int_{0}^{1}\sum_{j = 2}^{\infty}\bracks{xt\pars{ 1- t}}^{j}
\,{\dd t \over t\pars{1 - t}}
\\[3mm]&=\int_{0}^{1}{\bracks{xt\pars{ 1- t}}^{2} \over 1 - xt\pars{1 - t}}
\,{\dd t \over t\pars{1 - t}}
=\int_{0}^{1}{x^{2}t\pars{ 1- t} \over 1 - xt\pars{1 - t}}\,\dd t
\end{align}
\begin{align}
&\color{#c00000}{\sum_{j = 2}^{\infty}\prod_{k = 1}^{j}{2k \over j + k - 1}}
=2\
\overbrace{\int_{0}^{1}\bracks{-1 + {1 \over \bracks{1 - 2\pars{1 - t}t}^{2}}}
\,\dd t}^{\ds{=\ {\pi \over 2}}} = \color{#00f}{\Large\pi}
\end{align}
The last integral is trivially evaluated by 'completing the square' in the denominator.