This is certainly not an answer expected in IMO, but the proof works for far more general cases, see this posting, for instance.
Note that
$$ \frac{1}{c} \int_{0}^{\infty} \frac{1-\cos (as)}{s^{3/2}} \, \mathrm{d}s = |a|^{1/2} \quad \text{for any} \quad a \in \mathbb{R}, $$
where $c = \int_{0}^{\infty} \frac{1-\cos t}{t^{3/2}} \, \mathrm{d}t \in (0, \infty)$. This is easily proved by substituting $t = |a|s$. Then
\begin{align*}
&\sum_{i,j} |x_i + x_j|^{1/2} - \sum_{i,j} |x_i - x_j|^{1/2} \\
&= \frac{1}{c} \int_{0}^{\infty} \frac{1}{s^{3/2}}\biggl( \sum_{i,j} \cos((x_i- x_j)s) - \cos((x_i + x_j)s) \biggr) \, \mathrm{d}s \\
&= \frac{1}{c} \int_{0}^{\infty} \frac{1}{s^{3/2}}\biggl( \sum_{i,j} 2\sin(x_i s)\sin(x_j s) \biggr) \, \mathrm{d}s \\
&= \frac{1}{c} \int_{0}^{\infty} \frac{2}{s^{3/2}}\biggl( \sum_{i} \sin(x_i s) \biggr)^2 \, \mathrm{d}s \\
&\geq 0.
\end{align*}
Of course, it would be fun to have a more elementary solution.