The following is from jupyter notebook by python:
</p>
In [1]:
from sympy import S, sqrt
from SampleStats import SampleStats
from utils import to_latex
from iprint import *
# for auto-reloading extenrnal modules
%load_ext autoreload
%autoreload 2
In [2]:
ss = SampleStats()
n = ss.n
In [3]:
iprint_eqnarray([(k, v) for k, v in ss.moments_c2r_map.items()][:8])
$\displaystyle \begin{align}
\mu_{2} &= - \mu^{2} + \mu'{2}, \
\mu{3} &= 2 \mu^{3} - 3 \mu \mu'{2} + \mu'{3}, \
\mu_{4} &= - 3 \mu^{4} + 6 \mu^{2} \mu'{2} - 4 \mu \mu'{3} + \mu'{4}, \
\mu{5} &= 4 \mu^{5} - 10 \mu^{3} \mu'{2} + 10 \mu^{2} \mu'{3} - 5 \mu \mu'{4} + \mu'{5}, \
\mu_{6} &= - 5 \mu^{6} + 15 \mu^{4} \mu'{2} - 20 \mu^{3} \mu'{3} + 15 \mu^{2} \mu'{4} - 6 \mu \mu'{5} + \mu'{6}, \
\mu{7} &= 6 \mu^{7} - 21 \mu^{5} \mu'{2} + 35 \mu^{4} \mu'{3} - 35 \mu^{3} \mu'{4} + 21 \mu^{2} \mu'{5} - 7 \mu \mu'{6} + \mu'{7}, \
\mu_{8} &= - 7 \mu^{8} + 28 \mu^{6} \mu'{2} - 56 \mu^{5} \mu'{3} + 70 \mu^{4} \mu'{4} - 56 \mu^{3} \mu'{5} + 28 \mu^{2} \mu'{6} - 8 \mu \mu'{7} + \mu'{8}, \
\mu{9} &= 8 \mu^{9} - 36 \mu^{7} \mu'{2} + 84 \mu^{6} \mu'{3} - 126 \mu^{5} \mu'{4} + 126 \mu^{4} \mu'{5} - 84 \mu^{3} \mu'{6} + 36 \mu^{2} \mu'{7} - 9 \mu \mu'{8} + \mu'{9}.
\end{align}$
In [4]:
iprint_eqnarray([(k, v) for k, v in ss.moments_r2c_map.items()][:8])
$\displaystyle \begin{align}
\mu'{2} &= \mu^{2} + \mu{2}, \
\mu'{3} &= \mu^{3} + 3 \mu \mu{2} + \mu_{3}, \
\mu'{4} &= \mu^{4} + 6 \mu^{2} \mu{2} + 4 \mu \mu_{3} + \mu_{4}, \
\mu'{5} &= \mu^{5} + 10 \mu^{3} \mu{2} + 10 \mu^{2} \mu_{3} + 5 \mu \mu_{4} + \mu_{5}, \
\mu'{6} &= \mu^{6} + 15 \mu^{4} \mu{2} + 20 \mu^{3} \mu_{3} + 15 \mu^{2} \mu_{4} + 6 \mu \mu_{5} + \mu_{6}, \
\mu'{7} &= \mu^{7} + 21 \mu^{5} \mu{2} + 35 \mu^{4} \mu_{3} + 35 \mu^{3} \mu_{4} + 21 \mu^{2} \mu_{5} + 7 \mu \mu_{6} + \mu_{7}, \
\mu'{8} &= \mu^{8} + 28 \mu^{6} \mu{2} + 56 \mu^{5} \mu_{3} + 70 \mu^{4} \mu_{4} + 56 \mu^{3} \mu_{5} + 28 \mu^{2} \mu_{6} + 8 \mu \mu_{7} + \mu_{8}, \
\mu'{9} &= \mu^{9} + 36 \mu^{7} \mu{2} + 84 \mu^{6} \mu_{3} + 126 \mu^{5} \mu_{4} + 126 \mu^{4} \mu_{5} + 84 \mu^{3} \mu_{6} + 36 \mu^{2} \mu_{7} + 9 \mu \mu_{8} + \mu_{9}.
\end{align}$
In [5]:
p = 4
eqn_list = []
for i in range(1, p+1):
iprint_eqs('\mathbb{{E}}[\\bar{{X}}^{{{:d}}}]'.format(i),
to_latex(ss.E(ss.mean**i)))
print()
$\displaystyle \mathbb{E}[\bar{X}^{1}]=\mu$
$\displaystyle \mathbb{E}[\bar{X}^{2}]=\mu^{2} + \frac{\mu_{2}}{n}$
$\displaystyle \mathbb{E}[\bar{X}^{3}]=\mu^{3} + \frac{3 \mu \mu_{2}}{n} + \frac{\mu_{3}}{n^{2}}$
$\displaystyle \mathbb{E}[\bar{X}^{4}]=\mu^{4} + \frac{6 \mu^{2} \mu_{2}}{n} + \frac{4 \mu \mu_{3}}{n^{2}} + \frac{3 \mu_{2}^{2} \left(n - 1\right)}{n^{3}} + \frac{\mu_{4}}{n^{3}}$
In [6]:
M = [ss.central_moment(i) for i in range(p+1)]
eqn_list = []
for i in range(1, p+1):
iprint_eqs('\mathbb{{E}}[M_{{{:d}}}]'.format(i),
to_latex(M[i]), to_latex(ss.E(M[i])))
print()
$\displaystyle \begin{align}
\mathbb{E}[M_{1}]
&= 0 \
&= 0.
\end{align}$
$\displaystyle \begin{align}
\mathbb{E}[M_{2}]
&= - \frac{S_{1}^{2}}{n^{2}} + \frac{S_{2}}{n} \
&= \frac{\mu_{2} \left(n - 1\right)}{n}.
\end{align}$
$\displaystyle \begin{align}
\mathbb{E}[M_{3}]
&= \frac{2 S_{1}^{3}}{n^{3}} - \frac{3 S_{1} S_{2}}{n^{2}} + \frac{S_{3}}{n} \
&= \frac{\mu_{3} \left(n - 2\right) \left(n - 1\right)}{n^{2}}.
\end{align}$
$\displaystyle \begin{align}
\mathbb{E}[M_{4}]
&= - \frac{3 S_{1}^{4}}{n^{4}} + \frac{6 S_{1}^{2} S_{2}}{n^{3}} - \frac{4 S_{1} S_{3}}{n^{2}} + \frac{S_{4}}{n} \
&= \frac{3 \mu_{2}^{2} \left(n - 1\right) \left(2 n - 3\right)}{n^{3}} + \frac{\mu_{4} \left(n - 1\right) \left(n^{2} - 3 n + 3\right)}{n^{3}}.
\end{align}$
In [7]:
iprint_eqnarray([('\mathrm{{Var}}[M_{{{:d}}}]'.format(i),
to_latex(ss.var(M[i])))
for i in range(1, p+1)])
$\displaystyle \begin{align}
\mathrm{Var}[M_{1}] &= 0, \
\mathrm{Var}[M_{2}] &= - \frac{\mu_{2}^{2} \left(n - 3\right) \left(n - 1\right)}{n^{3}} + \frac{\mu_{4} \left(n - 1\right)^{2}}{n^{3}}, \
\mathrm{Var}[M_{3}] &= \frac{3 \mu_{2}^{3} \left(n - 2\right) \left(n - 1\right) \left(3 n^{2} - 12 n + 20\right)}{n^{5}} - \frac{3 \mu_{2} \mu_{4} \left(n - 2\right)^{2} \left(n - 1\right) \left(2 n - 5\right)}{n^{5}} - \frac{\mu_{3}^{2} \left(n - 10\right) \left(n - 2\right)^{2} \left(n - 1\right)}{n^{5}} + \frac{\mu_{6} \left(n - 2\right)^{2} \left(n - 1\right)^{2}}{n^{5}}, \
\mathrm{Var}[M_{4}] &= \frac{18 \mu_{2}^{4} \left(n - 1\right) \left(4 n^{4} - 52 n^{3} + 228 n^{2} - 438 n + 315\right)}{n^{7}} - \frac{12 \mu_{2}^{2} \mu_{4} \left(n - 1\right) \left(10 n^{4} - 93 n^{3} + 324 n^{2} - 513 n + 315\right)}{n^{7}} + \frac{8 \mu_{2} \mu_{3}^{2} \left(n - 2\right) \left(n - 1\right) \left(2 n^{4} - 24 n^{3} + 120 n^{2} - 315 n + 315\right)}{n^{7}} + \frac{4 \mu_{2} \mu_{6} \left(n - 1\right) \left(n^{2} - 3 n + 3\right) \left(10 n^{2} - 27 n + 21\right)}{n^{7}} - \frac{8 \mu_{3} \mu_{5} \left(n - 1\right) \left(n^{2} - 3 n + 3\right) \left(n^{3} - 4 n^{2} + 18 n - 21\right)}{n^{7}} - \frac{\mu_{4}^{2} \left(n - 1\right) \left(n^{5} - 23 n^{4} + 117 n^{3} - 345 n^{2} + 531 n - 315\right)}{n^{7}} + \frac{\mu_{8} \left(n - 1\right)^{2} \left(n^{2} - 3 n + 3\right)^{2}}{n^{7}}.
\end{align}$
In [8]:
iprint_eqnarray([('\mathrm{{Cov}}[M_{{{:d}}}, M_{{{:d}}}]'.format(i, j),
to_latex(ss.cov(M[i], M[j])))
for i in range(1, p+1)
for j in range(1, p+1) if i < j])
$\displaystyle \begin{align}
\mathrm{Cov}[M_{1}, M_{2}] &= 0, \
\mathrm{Cov}[M_{1}, M_{3}] &= 0, \
\mathrm{Cov}[M_{1}, M_{4}] &= 0, \
\mathrm{Cov}[M_{2}, M_{3}] &= - \frac{2 \mu_{2} \mu_{3} \left(n - 2\right) \left(n - 1\right) \left(2 n - 5\right)}{n^{4}} + \frac{\mu_{5} \left(n - 2\right) \left(n - 1\right)^{2}}{n^{4}}, \
\mathrm{Cov}[M_{2}, M_{4}] &= - \frac{6 \mu_{2}^{3} \left(n - 1\right) \left(4 n^{2} - 15 n + 15\right)}{n^{5}} - \frac{\mu_{2} \mu_{4} \left(n - 1\right) \left(n^{3} - 24 n^{2} + 60 n - 45\right)}{n^{5}} - \frac{2 \mu_{3}^{2} \left(n - 1\right) \left(2 n^{3} - 8 n^{2} + 18 n - 15\right)}{n^{5}} + \frac{\mu_{6} \left(n - 1\right)^{2} \left(n^{2} - 3 n + 3\right)}{n^{5}}, \
\mathrm{Cov}[M_{3}, M_{4}] &= \frac{6 \mu_{2}^{2} \mu_{3} \left(n - 2\right) \left(n - 1\right) \left(2 n^{3} - 24 n^{2} + 86 n - 105\right)}{n^{6}} - \frac{3 \mu_{2} \mu_{5} \left(n - 2\right) \left(n - 1\right) \left(n^{3} - 12 n^{2} + 28 n - 21\right)}{n^{6}} - \frac{\mu_{3} \mu_{4} \left(n - 2\right) \left(n - 1\right) \left(5 n^{3} - 32 n^{2} + 102 n - 105\right)}{n^{6}} + \frac{\mu_{7} \left(n - 2\right) \left(n - 1\right)^{2} \left(n^{2} - 3 n + 3\right)}{n^{6}}.
\end{align}$
In [9]:
G1 = sqrt(n * (n-1)) / (n-2) * ss.E(M[3]) / ss.E(M[2])**(S(3)/2)
G1.simplify()
Out[9]:
$\displaystyle \frac{\mu_{3}}{\mu_{2}^{\frac{3}{2}}}$
In [10]:
G2 = ss.E((n-1) * ((n+1)*M[4] - 3*(n-1)*M[2]**2)) / ((n-2) * (n-3) * ss.E(M[2])**2)
G2.simplify()
Out[10]:
$\displaystyle -3 + \frac{\mu_{4}}{\mu_{2}^{2}}$
In [ ]:
</div>
I edited the question regarding the Mathematica bit: is it correct now?
... The mma component of the question is still incorrect: The mma code is still calculating: $\operatorname{cov}(X^i, X^j)$ for $i,j$ = 1 to 4 when $X$ ~ $N(0,s^2)$. This is not the problem posed at the top, namely to find $\operatorname{cov}(m_i, m_j)$ for $i,j$ = 1 to 4. Nor does the calculation of $\operatorname{cov}(X^i, X^j)$ assist in deriving the calculation of $\operatorname{cov}(m_i, m_j)$. – wolfies Jun 16 '13 at 14:02