Problem:
Let $ A $ and $ B $ be an $ n \times n $ matrices with real entries. If $ AB = -BA $, prove that $$ {\det}{\left(A^4 + A^2B^2 + 2A^2 + I\right)} \geq 0. $$
My Approach:
If $ A $ invertible, then $$ AB = -BA \implies AA^{-1}B = -BA^{-1}A \implies B = -B \implies B = O. $$ So, $$ {\det}{\left(A^4 + A^2B^2 + 2A^2 + I\right)} = {\det}{\left(A^4 + 2A^2 + I\right)} = {\det}{\left(\left(A^2 + I\right)^{2}\right)} = \left({\det}{\left(A^{2} + I\right)}\right)^2 \geq 0. $$
If $ B $ invertible, then $$ AB = -BA \implies AB^{-1}B = -BB^{-1}A \implies A = -A \implies A = O. $$ So, $$ {\det}{\left(A^4 + A^2B^2 + 2A^2 + I\right)} = {\det}{(I)} = 1 \geq 0. $$
My Questions:
- Can we 'center' multiply both sides of the equation $ AB = -BA $ with a matrix? For example, in my solutions, $ AB = -BA \implies AA^{-1}B = -BA^{-1}A $.
- How do we prove it when $ A $ and $ B $ not invertible?
Thanks